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Abstract 21 

 22 

We present a new model called Bayesian Estimated Glacial Lake Volume (BE-GLAV) to 23 

estimate the volume of proglacial lakes. Presuming the lake cross-section as trapezoidal, BE-24 

GLAV uses a Bayesian calibration approach to adjust the cross-sectional geometry to match 25 

modelled and observed lake surface widths. We validated our model using bathymetric 26 

measurements from lakes spread across High Mountain Asia (specifically, the Himalaya and 27 

Tien-Shan), with aerial extents ranging from 0.01 to 5.5 km
2
. The modelled lake volumes agreed 28 

with the measured lake volume with a root-mean-square absolute uncertainty of ~14%. With 29 

minimum and maximum errors of ~0.3% and ~61.2%, BE-GLAV performed well compared to 30 

ten other models in a model inter-comparison experiment. Using the measured set of volumes, 31 

our model can constrain both the root mean square (RMS) error and the maximum percentage 32 

error in modelled lake volume, unlike other models, some of which can compute just the RMS 33 

uncertainty. 34 

1 Introduction 35 

 36 

            Glaciers have experienced extensive recession and thinning throughout the 20
th

 and 21
st

 37 

century, primarily due to global warming. In many regions, glacier retreat has accelerated over 38 

the past few decades (Bolch et al., 2012; Azam et al., 2018; Hock et al., 2019; Zemp et al., 2019), 39 

causing the formation and (or) expansion of proglacial lakes (Shugar et al., 2020; Wang et al., 2020; 40 

Chen et al. 2020; Haritashya et al., 2018). Some studies suggest a ~50% increase in the number of 41 

lakes and a ~53% increase in the total lake area worldwide (Shugar et al., 2020). 42 
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The High Mountain Asia (HMA) is home to ~15000 to ~25000 proglacial lakes (e.g., Furian et 43 

al., 2021). Some of these lakes are also the sources of Glacial lake outburst floods (GLOFs), 44 

which occur when the lake water is discharged catastrophically, causing significant damage to 45 

communities and infrastructure and the geomorphology of downstream regions (e.g., Wilson et 46 

al., 2019; Zheng et al., 2021; Sattar et al., 2022). Veh et al. (2019) showed that the flood peaks 47 

from GLOFs can rival monsoon-fed discharges in rivers up to thousands of kilometers 48 

downstream. Recently, Emmer et al. (2020) have shown that several thousand lives have been 49 

claimed by a small number of GLOFs and associated mass movements, and many more people 50 

suffer when major infrastructure is damaged by them (e.g., Lutzow et al., 2023). 51 

The volume of a glacial lake is an important input parameter for many hydrological applications such 52 

as modelling the severity of GLOF events (e.g., Rinzin et al., 2023; Emmer et al., 2022); estimating 53 

glacier retreat when coupled with various minimalistic ice-flow models (Oerlemans and Nick, 2006); 54 

and local small-scale hydropower production (e.g., Sattar et al., 2019). Unfortunately, glacial lakes 55 

are often located in some of the most remote and challenging terrains, making the in-situ 56 

measurement of their volumes extremely difficult. Consequently, the in-situ estimates of lake volume 57 

exist only for a handful of lakes in the HMA (e.g., Haritashya et al., 2018; Zhang et al., 2023; Sharma 58 

et al., 2018; Watson et al., 2020; Kapitsa et al., 2017).  59 

Several studies have proposed power-law (non-linear) relationships between lake volume and                    60 

other lake parameters (i.e., area and/or mean depth) to estimate lake volume. These relationships 61 

(scaling models) are derived by fitting an exponential/ polynomial curve to data representing       62 

volume-area/ volume-mean depth data for multiple lakes (e.g., O’Connor et al., 2001; Zhang et al., 63 

2023; Huggel et al., 2002). Some also utilise mean lake surface width, volume and area (e.g.,          64 

Munoz et al., 2020). Scaling models have been popular because of their simplistic formulation   and 65 
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ease of implementation on large, spatial scales. The scaling models proposed by O’Connor           et 66 

al. (2001), Huggel et al. (2002), and Fujita et al. (2013) were calibrated against the lake volume     67 

and area from the Central Oregon Cascade Range, Swiss Alps, and Himalaya, respectively, and 68 

Cook and Quincey (2015) derived a scaling relationship using a global dataset of lake volume 69 

 Some scaling models have been derived for a specific lake using time series data of the and area.70 

lake volume and area (e.g., Yao et al., 2012; Sharma et al., 2018). Wang et al. (2012) developed a 71 

model using the          volume and area data from twenty lakes in the Longbasaba and Pida regions 72 

(in China), and Emmer and Vilimek (2013) calibrated their scaling model with volume and area data 73 

from thirty-five lakes from the Peruvian Andes. Further, Zhang et al. (2023) calibrated their model 74 

against the areas and volume data from 47 lakes across the Indian, Nepal, Bhutan and Tibetan 75 

Himalaya. The scaling  models that Munoz et al. (2020) and Qi et al. (2022) developed were among 76 

the first to use lake surface width as an input parameter, along with volume and area, calibrating 77 

them against data from glacial lakes in the Andes and the Tibetan Himalaya, respectively. 78 

The uncertainty associated with the lake volume estimated using scaling models exponentially 79 

increases as the lake area increases (e.g., Zhang et al., 2023) due to the non-linear nature of the 80 

empirical relationship between lake volume and lake area. Therefore, the scaling models have been 81 

reported to give unrealistic estimates of lake volume (i.e., more than three times the measured lake 82 

volume in some cases) for individual lakes (e.g., Zhang et al., 2023). Additionally, Cook and 83 

Quincey (2015) conclusively showed that lake volume and lake area are auto-correlated, which 84 

can give a false impression of accuracy in the estimated lake volume. Hence, the use of lake area 85 

in both the variables of Volume- Area (V-A) regression for proglacial lakes may create a 86 

misleading impression about the quality of the data used in the relationship, and the high 87 

correlation coefficients may misleadingly indicate reduced uncertainty in the V-A relation (e.g., 88 
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With over 5000 existing glacial lakes at present Cook and Quincey (2015); Haeberli et al., 2016). 89 

and more predicted to form in the future, e.g., in the Karakoram region (Furian et al., 2021; Zheng et 90 

al., 2021), it is important to develop a comprehensive modelling framework that addresses concerns 91 

with the empirical volume-area scaling approaches and also constrains the level of uncertainty. In 92 

section 4.2  we address the auto-correlation issue. 93 

The Bayesian Calibration based models have been successfully used in many glaciological 94 

applications, such as the estimation of ice thickness (Brinkerhoff et al., 2017; Werder et al., 2020); 95 

estimation of supraglacial debris heat conductivity (Laha et al., 2022); optimisation of firn 96 

densification models (Verjans et al., 2020); and inferring basal sliding parameters (Gopalan et al., 97 

2021). The calibration process is based on Bayes’ theorem of probability and allows combiningprior 98 

knowledge of the system variable(s) with the fitting of a physical model to the observations (e.g., 99 

Werder et al., 2020). 100 

This study presents a new Bayesian statistics-based numerical model (Bayesian Estimated Glacial 101 

Lake Volume - BE-GLAV) to estimate proglacial lake volume. To our knowledge, ours is the first of 102 

its kind among the existing glacial lake volume estimation models. 103 

2 Materials and Methods 104 

 105 

Our model (BE-GLAV) assumes that at any point along the lake’s centreline, the cross-106 

sectional profile of the bed elevation of a proglacial lake can be approximated as parabolic or 107 

trapezoidal in nature (Figure 1a). This is because the present lake bed was formerly under a 108 

glacier whose cross-sectional geometry resembles a trapezium (e.g., Oerlemans, 1997). This 109 

geometry works particularly well for lakes with thick sediment deposits on their beds and nearly 110 
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constant sloping side walls. It is also a useful approximation for lakes that have U-shaped cross-111 

sections. We expect that most of the statistical uncertainty associated with this model—which we 112 

determine directly for our sample of measured lakes— will occur for common U-shaped lake 113 

cross sections, where there are anomalous extreme overdeepenings, or exceptional thicknesses of 114 

deposited sediment (hence, shallowing), and other sharp departures from trapezoids. Another 115 

source of the anomaly is the ice-ramps that extend under the water line from the connected 116 

glacier’s terminus (Robertson et al., 2012). These ramps have been found to extend up to >500 m 117 

from the calving termini of the connected glacier into the respective proglacial lake. The surfaces 118 

of these ice ramps are undulating and covered with a thick layer of unsorted sediment derived 119 

from supraglacial and englacial debris, lateral moraines and fluvial deltaic deposition (Robertson 120 

et al., 2012). The sediment on the ice ramps reduces melting and, therefore, thinning of the 121 

ramps, and can load the ramp to hinder flotation. Consequently, the ice ramps can remain intact a 122 

few hundreds of metres in front of the calving termini (Robertson et al., 2012). 123 

Throughout the paper, the phrase ‘present lake bed’ refers to the deglaciated area under the lake 124 

at the time of bathymetric measurements. Consequently, for every cross-section, we have three 125 

variables, namely lake base width (Wb), lake depth (H), and side slope (𝜆 = 𝑐𝑜𝑡𝛼0 + 𝑐𝑜𝑡𝛼1)  126 

(Figure 1a). The lake surface width at a particular cross-section (Ws) can be expressed in terms 127 

of the variables as (Figure 1a): 128 

𝑾𝒔 = 𝑾𝒃 + 𝝀𝑯                (1) 129 

Therefore, the volume (V) of a proglacial lake with n cross-sections is computed as: 130 
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𝑽 =
𝟏

𝟑
𝟎. 𝟓(𝑾𝒃𝟏 + 𝑾𝒔𝟏)𝑯𝟏𝒙 + ∑ 𝟎. 𝟓(𝑾𝒔𝒊 + 𝑾𝒃𝒊)𝑯𝒊𝒙

𝒏−𝟐
𝒊=𝟐 +

𝟏

𝟑
𝟎. 𝟓(𝑾𝒃𝒏−𝟏 + 𝑾𝒔𝒏−𝟏)𝑯𝒏−𝟏𝒙       131 

(2) 132 

Where, Wsi, Wbi and Hi are the lake surface width, base width and lake depth at cross-section i, 133 

respectively. x represents 50 m grid resolution. 134 
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Our model estimates the physically plausible values of Wb, λ and H for a cross-section by 135 

minimising the difference between observed and modelled surface width for each grid point 136 

along the lake’s centreline (Figure 1d). The minimization procedure was performed using 137 

Bayesian calibration. 138 

 139 

2.1 Bayesian Calibration 140 

 141 

The Bayesian calibration approach identifies Wb, λ and H as the free parameters and defines this parameter 142 

set as θ. The calibration process relies on Bayes’ theorem (Eq. 2) that allows updating a probability 143 

distribution P(θ) based on observed data D: 144 

𝑃(𝜃/𝐷) =
𝑃(𝐷/𝜃)𝑃(𝜃)

𝑃(𝐷)
               (3) 145 

Where P(θ) is called the prior distribution, P(D/θ) is called the likelihood distribution that     146 

quantifies the difference between modelled and measured lake surface width, i.e., Ws and P(θ/D)      147 

is the posterior probability distribution and is the quantity that our model calculates. The term P(D) 148 

is the marginal probability distribution of the data; is a constant term, independent of θ, that does  149 

not affect P(θ/D) and is therefore disregarded in our analyses (e.g., Brinkerhoff et al., 2017). 150 

 151 

2.2 Estimation of P(θ) 152 

2.2.1 For Type A lakes 153 
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 154 

By Type A lakes, we refer to those lakes where the ice thickness map of the corresponding       155 

connected glacier (i.e., from a time when part of the lake’s current bed was beneath the glacier) is 156 

available. 157 

 158 

We use normal and weakly informative prior distributions about the initial values of θ so that the 159 

constraint of P(θ) on P(D/θ) is minor (e.g., Verjans et al., 2020). To calculate P(θ) for the grid         160 

points along the lake’s centreline (Figure 1d), we first estimate the distribution for each of the free 161 

parameters (i.e., Wb, λ and H) at the grid points using an ice thickness map of a glacier from a time 162 

when either the whole or a part of the current lake bed was glaciated (i.e., the light-green coloured 163 

region in Figure 1d). Using the ice thickness and the corresponding surface elevation maps of the 164 

glacier (Figure 1b), we estimate the maximum extent and the corresponding depth distribution of         165 

the glacier bed overdeepening of which the lake is a part (i.e., the aqua coloured region in Figure        166 

1b). We then delineate the centreline of the overdeepening and at every 50 m interval along the 167 

centreline we estimate Ws, Wb, λ, H, Wb/Ws (R1) and H/Ws (R2) for the corresponding cross-         168 

sections of the bed overdeepening, assuming that the depression (i.e., the aqua coloured region in 169 

Figure 1c) is completely filled. We then estimate the mean (μλ, μR1, μR2) and standard deviation (σλ,  170 

σR1, σR2) of λ, R1 and R2 at the 50 m apart grid points for the area shown in Figure 1c. We also      171 

estimate the correlation coefficients for the pairs (Wb, H), (H, λ) and (Wb, λ), namely ρ1, ρ2 and ρ3, 172 

respectively. ρ1, ρ2 and ρ3 are considered non-zero only when the total number of grid points in the 173 

overdeepening area exceeds ten. Because the overdeepening and the lake are both parts of a single, 174 

larger glacier bed depression, our model assumes that the mean, standard deviations, and 175 
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correlation coefficients calculated above can be applied to the corresponding entities in the 176 

present lake bed, which is the light-green coloured region shown in Figure 1d. The means and 177 

standard deviations of λ, R1, R2 for all grid points (except for the extremes; see Figure 1d) 178 

located along the centreline of the present lake bed (Figure 1d) are μλ, μR1, μR2 and σλ, σR1, σR2, 179 

respectively. The minimum and maximum values of R2 (i.e., mR2 and MR2, respectively) are also 180 

calculated for use in the posterior distribution, as explained in section 2.4. Similarly, within the 181 

present lake-bed, the correlation coefficients for the pairs (Wb, H), (H, λ) and (Wb, λ) are ρ1, ρ2 182 

and ρ3, respectively. At the two grid points where the lake centreline ends, we assume H = 0, Wb 183 

= 0 and an undefined λ. H is then calculated for each grid point along the centreline of the 184 

present lake-bed (Figure 1d) by inferring depth values from the distributed depth map of the 185 

glacier bed overdeepening. This map is produced by using the ice thickness and glacier surface 186 

elevation for the previously glaciated region, which is now part of the lake (i.e., the green region 187 

in Figure 1d). By linearly interpolating the depth values from the grid point that is closest to the 188 

former glacier front and is located in the light-green region (i.e., X in Figure 1d), H is calculated 189 

for the remaining grid points (i.e., those that are in the blue zone of Figure 1d). 190 

 191 

The mean and standard deviation for λ (i.e., μλ and σλ) stay constant at each grid point along the 192 

lake's centreline (aside from the first and last) (Figure 1d). The mean and standard deviation for 193 

Wb is formulated as μW = Ws μR1 and σW = σR1Ws, where Ws is the lake surface width at the grid 194 

point (Figure 1d). The mean for parameter H (i.e., μH) at every grid point is calculated as μH = H. 195 

The standard deviation (σH) of H at the grid point is assumed to be of the form: 196 

σH = kH          (4) 197 

where, the value of the parameter k is set as 0.5 (i.e., we assume 50% margins around lake 198 

depth). Finally, for every grid point lying along the lake’s centreline (Figure 1d), the prior 199 
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probability distribution of θ was formulated as a multivariate normal distribution with mean μƟ 200 

[μλ, μW, μH] and the covariance (Σθ) a 3-by-3 matrix as shown below: 201 

[

𝜎𝑊
2 𝜎𝑊𝜎𝐻𝜌1 𝜎𝜆𝜎𝑊𝜌3

𝜎𝑊𝜎𝐻𝜌1 𝜎𝐻
2 𝜎𝜆𝜎𝐻𝜌2

𝜎𝜆𝜎𝑊𝜌3 𝜎𝜆𝜎𝐻𝜌2 𝜎𝜆
2

] 

The above procedure was followed for seven lakes (i.e., the lakes named in bold fonts) in Table 202 

S1. 203 
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 204 
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 205 

Figure 1. Schematic representation outlining the process to estimate P(θ) for Type A lakes (a-d); 206 

aqua coloured regions represent the currently glaciated areas, the blue region represents the 207 

region that was filled with water in the past as well as during the time of bathymetric surveys, 208 

green regions represent the portion of the current lake bed that was glaciated in the past but is 209 

currently part of the lake bed; a) assumption of trapezoidal-shaped lake cross-sections where 210 

dashed red line represents the actual lake bed, free parameters are Wb (base width), λ (sidewall 211 

slope parameter), H (lake depth). The lake surface width is Ws. Here, λ is formulated as a 212 

function of the slope angles (i.e., α0 and α1) as 𝜆 = 𝑐𝑜𝑡𝛼0 + 𝑐𝑜𝑡𝛼1; b) top view of the lake’s 2-D 213 

extent and the past ice thickness map of the region; yellow dots represent grid points at 50 m 214 

intervals; c) the procedure to derive the marginal and the joint prior distribution of the free 215 

parameters; d) schematic showing the necessary boundary conditions i.e., H=0, Wb=0 and 216 

undefined λ; e) flowchart of the MCMC block of our model (see section 2.4). For Type A lakes, 217 

variable V =3, else it is set to 2 (Eqn. 7); the Monte Carlo module is solved at every grid point 218 

(yellow circle) located along the lake’s centreline at 50m intervals (Bottom left corner). 219 

Identification of the flow in panel (e) MCMC block can be determined from the Roman 220 

numerals. 221 

2.2.2 For type B lakes 222 

 223 

By Type B lakes, we refer to those lakes where the corresponding glacier ice thickness map is 224 

unavailable, unlike the Type A counterparts. Our approach to calculating P(θ) at grid points differs 225 

slightly when historical ice thickness maps are unavailable. In this case, we use two free parameters 226 
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(Wb and H) instead of three, with λ being treated as a constant equal to two (i.e., the lake’s sidewalls 227 

are assumed to have 45-degree slopes). Therefore, for these lakes, the free parameter set θ consists of 228 

two parameters, Wb and H. To avoid limiting P(θ) on P(D/θ), we assume normal and weakly 229 

informative priors for the initial values of θ (i.e., Wb and H) (e.g., Verjans et al., 2020). Except for the 230 

first and last grid points, the prior distribution for H was modelled as a normal distribution with 231 

mean μH = Hlake and standard deviation σH = 0.5H (i.e., we assumed 50% margins about the 232 

initial estimate of H). Where Hlake is equal to the mean lake depth as determined by the two 233 

volume-area scaling models of Zhang et al. (2023) for the Himalaya and Kapista et al. (2017) for 234 

the Tien Shan. These models were chosen because they were calibrated against the available in-235 

situ data (i.e., volume and area) in the respective regions. We establish a normal prior for Wb 236 

with a mean μW and standard deviation σW. The standard deviation of the observed lake surface 237 

widths at the grid points is also set to be equal to σW. Since there is no prior information on the 238 

lake geometry, we assume that μW equals the grid spacing of 50m. We further assumed that the 239 

free parameters Wb and H are independent of each other for lakes where there is a scarcity of past 240 

ice-thickness maps of their corresponding glaciers. As a result, for each grid point along the 241 

lake's centreline, the prior probability distribution of θ, i.e., P(θ), was defined as a multivariate 242 

normal distribution with a mean μƟ [μW, μH] and a 2-by-2 covariance matrix (Σθ) as shown 243 

below: 244 

 
𝜎𝑊

2 0

0 𝜎𝐻
2  

Finally, the prior distribution of θ is formulated as a multivariate normal distribution: 245 

P(θ) ~ MVN (μθ, Σθ)       (5) 246 

 247 
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2.3 Estimation of P(D/θ) 248 

 249 

Our model uses a normal likelihood function P(D/θ) that quantifies the match between modelled 250 

and observed lake surface widths: 251 

𝑃(𝐷/𝜃) ∝ 𝑒−
1

2
(
𝑊𝑠𝑚−𝑊𝑠𝑜

𝜎
)2

       (6) 252 

Where, Wsm and Wso represent modelled and observed lake surface widths, respectively, and σ
2
 is 253 

the variance. The variance sets the spread allowed for the model outputs when compared to 254 

measured values and are calculated by taking 10% margins around the corresponding observed 255 

surface widths (e.g., Verjans et al., 2020). Allowing for such spread is necessary because model–256 

observation discrepancy can result from various factors, including errors in measuring surface 257 

widths from satellite imagery, uncertainty in estimating the mean and standard deviation of free 258 

parameters, and uncertainty in modelled past ice thickness map of the glacier that covered a 259 

portion of the lake’s current bed. Errors are also likely to be introduced by the measured volume, 260 

depending on the survey style of the bathymetric measurements, track density, and interpolation 261 

technique used in preparing 3-D bathymetric maps from point-based, single beam sonar survey 262 

(Watson et al., 2020). 263 

 264 

2.4 Estimation of P(θ/D) 265 

 266 

The posterior distribution P(θ/D) gives our model’s probability distribution over the parameter 267 

space (i.e., θ) given the observed lake surface widths. In our model, with a weak informative 268 

P(θ), the distribution P(θ/D) is substantially governed by P(D/θ). Due to the paucity of any 269 
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analytical form of P(θ/D) for studied lakes, we investigate the parameter space to generate an 270 

ensemble of θj approximating P(θ/D) (e.g., Brinkerhoff et al. 2017; Verjans et al., 2020). This is 271 

achieved efficiently by applying a gradient-free Markov Chain Monte Carlo (MCMC) algorithm, 272 

Random Walk Metropolis (RWM) (Hastings, 1970). The posterior distribution of the free 273 

parameter set is calculated at every grid point. We first estimate lake surface width for all grid 274 

points using the grid point-specific initial estimates of μθ. The difference between modelled and 275 

observed lake surface width is quantified by the likelihood, i.e., P(D/θ). The posterior probability 276 

(i.e., P(θ/D)) 277 

is calculated following Eq. 3. At this point, the RWM algorithm starts, and the state of the chain, 278 

θj (Figure 1e part (i)), is set to the original values of the free parameters, and the corresponding 279 

posterior probability is saved as P(θj /D). Note that the j subscript denotes the iteration number, 280 

which is equal to 0 at this initial step. The RMW algorithm then proposes a new θj* from a 281 

proposal distribution (Figure 1e part (ii)). Here, we assume the proposal distribution to be the 282 

symmetric multivariate normal distribution centred on θj. Consequently, the random selection of 283 

θj* depends only on the current state θj and the proposal variance (Σprop in Figure 1e). For the 284 

parameter set θj*, the model recalculates the lake surface width for the grid point and P(θj*/D) is 285 

computed  (Figure 1e part (iii) & part (iv)). From there, the proposed θi* is either accepted or 286 

rejected in the ensemble approximating P(θ/D) . This decision depends on (vi; Figure 1e part (vi))287 

the ratio α = P(θj*/D)/ P(θ/D) . The RWM then selects a random number u (Figure 1e part (v))288 

from the uniform distribution U(0,1) and θj* is accepted in the ensemble only if u > α (Figure 1e 289 

. The saved set becomes the updated current status for the next iteration θi+1 with its part (vi))290 

associated P(θj+1/D) (Figure 1e part (vii) & part (viii)). The algorithm iterates this process and 291 

reaches a final posterior distribution over θ. The RWM algorithm has the property that the chain 292 
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will ultimately converge to a stationary distribution representing the posterior P(θ/D). Thus, after 293 

a sufficiently high number of iterations of the algorithm, the ensemble of parameter sets is 294 

representative of P(θ/D). In our study, we discovered that 5000 iterations are sufficient to 295 

achieve convergence. The proposal covariance Σprop must account for inter-dependence among 296 

the different components of θ; i.e., the value of one free parameter can influence the value of 297 

another free parameter for the model to reach a good match with the observed data. Σprop can 298 

capture this dependence between parameters and, for optimality, it is updated every given 299 

number of iterations (100 in our study) using Eq. (7) (Rosenthal, 2011): 300 

𝛴𝑝𝑟𝑜𝑝 =
2.382

𝑉
𝛴𝑐𝑜𝑣          (7) 301 

Where Σcov is the covariance matrix between the model’s free parameters at this stage of the 302 

iterative chain, and V is the number of free parameters, which is three for lakes with a historical 303 

ice thickness map of connected glaciers, and two for those that do not.  304 

The ensemble of P(θ/D) was then checked for the presence of physically unrealistic parameter 305 

sets before computing the posterior probability distribution. This was carried out following a 306 

two-step approach wherein we first removed all the θs with non-positive values for any free 307 

parameters (i.e., Wb, λ, H). We then separated the lakes where the historical map of the 308 

associated glacier's ice thickness was available and those without. For lakes with ice thickness 309 

map, we eliminated θs where the relationship between the simulated lake depth and the 310 

associated observed lake surface width was outside the range [mR2, MR2] (see section 2.2 for 311 

more information on mR2 and MR2). For the rest of the lakes with no ice thickness map, we first 312 

estimated the means of mR2 and MR2 (i.e., μmR2 and μMR2, respectively) and rejected θs where the 313 

ratio of modelled lake depth to observed lake surface width was not in the interval [μmR2, μMR2]. 314 

The remaining θs in the ensemble after the above filtering process were used to estimate the 315 
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posterior distribution. After obtaining the posterior distributions of the free parameter set at every 316 

grid point along the lake’s centreline, we generate an ensemble of lake volume estimates using 317 

Eq. (2). Finally, the mean of the ensemble is our modelled estimate of lake volume. 318 

3 Data and Validation sites 319 

 320 

We validated our model, assessing its effectiveness across 66 proglacial lakes in the central and 321 

eastern Himalaya and the Tien Shan (Figure S1a and Figure S1b). Table S1 provides information 322 

on the lake parameters of all 66 lakes. The glacier ice thickness and corresponding surface 323 

elevation were inferred from the Global consensus ice thickness dataset of Farinotti et al. (2019) 324 

and Millan et al. (2022). 325 

4 Results and Discussion 326 

 327 

4.1 Modelled lake volumes 328 

 329 

Modelled and measured estimates of all 66 lake’s volume agree well with each other, with a 330 

mean, absolute, and relative uncertainty of ~14% (Table S1). Lakes Bechung and Aksu 1 had the 331 

largest (~61.2 %) and the smallest (0.3%) error in the predicted lake volume, respectively. The 332 

inventory of 66 lakes was approximately equally divided into four categories based on their lake 333 

area (Figure 2). Except for Lake Bechung, the percentage deviation of our modelled lake 334 

volumes from measured is consistently within the range of ~ -36% to ~ 36% (Figure 2b; Table 335 



manuscript submitted to Earth and Space Science 

19 

 

S1). In addition to that, the results were unchanged when a coarse grid resolution of 50-100 m 336 

was implemented. 337 

 338 

In our further treatment, we use the term error to mean the percentage departure of an individual 339 

measured lake volume from its modeled volume. Uncertainty then carries a statistical 340 

significance of how the actual (but unmeasured) volumes of an unknown population of lakes 341 

may vary from the modelled mean for a given lake area, whereas the term “maximum error” 342 

could, for instance, refer to the possible greatest outliers of the shallowest and deepest lakes for a 343 

given lake area in any comparable population of about 66 unmeasured lakes in any location 344 

where glacial valley hypsometry closely resembles that in the Himalaya and Tien Shan. 345 

4.2 Comparison with other models 346 

 347 

Figure 2 and Table S3 show the performance of our model with respect to ten previously 348 

published models (listed in Table S2) that are essentially power-law relations between lake 349 

volume and lake area. 350 

 351 

The minimum error in lake volume simulated by each scaling model ranged from ~0.1% to 92%, 352 

while the maximum error ranged from ~92% to ~1779% (Table S3). The large value of the 353 

maximum bound of the error indicates the unreliability of the scaling models for individual 354 

lakes. Lake volumes modelled using Fujita et al. (2013) and Yao et al. (2012) approaches, both 355 

calibrated using volume-area data from Himalayan lakes, showed a systematic uncertainty of at 356 

least 130% and 250%, respectively, for all lakes in the Tien Shan (Table S3). This demonstrates 357 
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that using some scaling models in places where they have not been calibrated with corresponding 358 

observed lake volume-area data is dubious. 359 

 360 

The scaling model of Zhang et al. (2023) gave the overall third-best estimate of proglacial lake 361 

volume in the Himalayan region with a minimum and maximum error of 0.1% and 233%, 362 

respectively, while the scaling model developed by Kapista et al. (2017) gave the best estimate 363 

of lake volume for all the lakes located in the Tien Shan region (i.e., maximum error < ~10%) 364 

(Table S3). This is likely due to the inclusion of in-situ volume-area data from 47 lakes in the 365 

case of Zhang et al. (2023) and 50 for Kapista et al. (2017). 366 

 367 

The scaling approach of Emmer and Vilimek (2013) performed second best by being among the 368 

top five models for 61 out of 66 lakes (i.e., 48 lakes in Tien Shan and 13 in the Himalaya) 369 

(Figure S3). We were surprised by this outcome because that model was calibrated using volume 370 

and area data from lakes in the Peruvian Andes (Emmer and Vilimek, 2013). This suggests 371 

morphometric similarities between the Andes and the HMA, which could be attributed to active, 372 

receding glaciers and concurrent intense tectonism in both regions. However, our analysis is 373 

restricted due to the poor quality of existing knowledge about depth erosion by glaciers and the 374 

overdeepened topography of their rock beds (Haeberli et al., 2016). We believe that more 375 

research is needed to support the above hypothesis, such as running our model on Peruvian 376 

Andes lakes and comparing its performance to that of Emmer and Vilimek (2013). 377 

 378 

Our model was among the top five performing models at 65 out of 66 lakes with minimal prior 379 
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353 tuning against measured lake area-volume data, unlike scaling models. In our volume 380 

estimates, the maximum and minimum errors were ~1% and ~61%, respectively (Figure 2 and 381 

Table S3; Supplementary). Compared to all the scaling models, our model's projected lake 382 

volume was among the two closest to the observed volume for Lake Bechung (~61% deviation 383 

from measured volume), even with the high magnitude of error. The outcome was the same for 384 

model runs at higher spatial resolutions of 30m and 20m, suggesting that sometimes a lake's 385 

morphometry might be too complicated to simulate for any model despite its capability. 386 

 387 

Besides volume, BE-GLAV can estimate depth along the lake’s centreline. Bathymetry was 388 

available for only 17 lakes located in the Himalaya. Unlike volume, modelled and measured lake 389 

depth was in good agreement with each other only for eight lakes (Figure S2). Out of these eight 390 

lakes, Thulagi, Imja, Lower Barun, South Lhonak, Bechung, Luggye and Ranzeriaco were 391 

classified as Type A lakes, and Maqiongco was classified as Type B lake (Figure S2; Table S1). 392 

For these eight lakes, the RMS uncertainty between modelled and measured lake depth along the 393 

lake centreline ranges between 4m to 17m (Figure S2). Discrepancies between modelled and 394 

measured lake depth (i.e., along the lake centerline) were found to be large near the calving front. 395 

However, the lake depth near the glacier terminus is not only difficult to measure but, at many 396 

times, is also marred with uncertainties due to the presence of ice ramps that extend laterally up 397 

to at least a hundred meters from the calving front (Haeberli et al., 2016). Additionally, due to 398 

the dynamic nature of the region near the glacier terminus, the lake depth is estimated via spatial 399 

interpolation of point-based lake depth values that were measured relatively further away from 400 

the glacier terminus. These factors contribute to the uncertainty in measured lake depth near the 401 
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glacier terminus. However, this does not pose an issue, because the main aim of our paper is to 402 

estimate lake volume and not lake bathymetry along the lake centerline. 403 

 404 

Results demonstrate that, unlike scaling models where the level of uncertainty in the lake volume 405 

is unpredictable, BE-GLAV can restrict the upper limit of the error in volume (likely due to the 406 

Bayesian calibration procedure) and do that with minimal pre-calibration against the regional, 407 

observed lake volume, and area data.  408 

 409 

For every Type B lake, we formulated the prior distribution of lake-depth at every gridpoint (i.e., 410 

along the lake centerline) as a Gaussian distribution centered around Hlake (where, Hlake is the 411 

mean depth that is derived using the V-A scaling models proposed by Zhang et al. (2023) and 412 

Kapitsa et al. (2017) for lakes located in the Himalaya and the Tien Shan, respectively). 413 

Interestingly, despite using auto-correlated variables (i.e., lake volume and lake area) in 414 

calculating Hlake, the Bayesian calibration part of our model was able to restrict the maximum 415 

level of error for individual lake volumes as well as the 95% confidence level of global 416 

uncertainty in the modelled lake volume. This shows that BE-GLAV provides a robust way-417 

forward to estimate proglacial lake volume by using mean lake depth derived from a V-A scaling 418 

model. Such a feat was earlier not possible by solely using V-A scaling techniques because lake 419 

area and lake volume are autocorrelated (discussed in section 1), which can give a false 420 

 (e.g., Cook and Quincey, impression of accuracy in the corresponding estimated lake volume421 

2015; Haeberli et al. (2016)). 422 

 423 



manuscript submitted to Earth and Space Science 

23 

 

It is crucial to highlight that BE-GLAV, as the geometry is presently developed, cannot be 424 

applied to supraglacial, ice-marginal, or extremely shallow lakes (depth <5-10 m) since our 425 

assumption regarding the trapezoidal or parabolic structure of the lake cross-section may not 426 

hold true for such lakes. 427 

 428 
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Figure 2. For simplicity, the set of 66 lakes was divided into 4 parts based on lake area (a,c,e,g). 430 

Boxplot of % error (i.e., % deviation from measured) of modelled lake volumes for lakes with 431 

area > 0.2 km
2
 (a), 0.05 km

2
<=area<0.2 km

2
 (c), 0.03 km

2
<=area<0.05 km

2
 (e), area>0.03 km

2
 432 

(g). The red dots in a, c, e, g represent the % error in lake volumes modelled by BE-GLAV; Box 433 

plot of measured lake area for lakes with area > 0.2 km
2
 (b), 0.05 km

2
<=area<0.2 km

2
 (d), 0.03 434 

km
2
<=area<0.05 km

2
 (f), area>0.03 km

2
 (h). In all the box and whisker plots, the ends of the 435 

whiskers mark the +/- 3σ limits beyond which any data point was treated as an outlier. The 436 

vertical ends of the boxes represent the Interquartile range (IQR). 437 

5 Conclusions 438 

 439 

We present a proof of concept where a new Bayesian calibration-based numerical model (BE-440 

GLAV) is used to estimate the volume of a proglacial lake. Assuming the lake cross-section to 441 

be trapezoidal, BE-GLAV minimises the difference between modelled and measured lake 442 

surface width. Our modelled volumes were in good agreement with that measured with a mean 443 

absolute uncertainty of ~14%, and it was able to limit the maximum error to ~61%, unlike the 444 

large errors of the scaling models. A model intercomparison experiment showed that all models 445 

(scaling and our method) showed acceptable performance (about average) for lakes with 446 

extremely shallow bathymetry (<10 m) for more than half of the current lake extent (e.g., 447 

Bechung). 448 

BE-GLAV could be a good—we think better— alternative to scaling models for regions where 449 

there is a paucity of bathymetric surveys. It is easy to implement with minimal calibration, unlike 450 

the scaling counterparts. We have indirect evidence that BE-GLAV may perform well for the 451 
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Peruvian Andes, but we would need to test it there as well as in areas where active tectonics and 452 

valley hypsometry could differ from HMA. 453 

 454 
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