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Key Points:
e Bayesian calibration based estimation of proglacial lake volume
e Method applied to sixty-six lakes located in the High Mountain Asia

e Reduction of maximum error in modelled lake volume by >5 times as compared to
existing scaling models

e Requires minimal calibration with observations as compared to scaling models
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Abstract

We present a new model called Bayesian Estimated Glacial Lake Volume (BE-GLAV) to
estimate the volume of proglacial lakes. Presuming the lake cross-section as trapezoidal, BE-
GLAYV uses a Bayesian calibration approach to adjust the cross-sectional geometry to match
modelled and observed lake surface widths. We validated our model using bathymetric
measurements from lakes spread across High Mountain Asia (specifically, the Himalaya and
Tien-Shan), with aerial extents ranging from 0.01 to 5.5 km?. The modelled lake volumes agreed
with the measured lake volume with a root-mean-square absolute uncertainty of ~14%. With
minimum and maximum errors of ~0.3% and ~61.2%, BE-GLAYV performed well compared to
ten other models in a model inter-comparison experiment. Using the measured set of volumes,
our model can constrain both the root mean square (RMS) error and the maximum percentage
error in modelled lake volume, unlike other models, some of which can compute just the RMS

uncertainty.

1 Introduction

Glaciers have experienced extensive recession and thinning throughout the 20" and 21°
century, primarily due to global warming. In many regions, glacier retreat has accelerated over
the past few decades (Bolch et al., 2012; Azam et al., 2018; Hock et al., 2019; Zemp et al., 2019),
causing the formation and (or) expansion of proglacial lakes (Shugar et al., 2020; Wang et al., 2020;
Chen et al. 2020; Haritashya et al., 2018). Some studies suggest a ~50% increase in the number of

lakes and a ~53% increase in the total lake area worldwide (Shugar et al., 2020).
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The High Mountain Asia (HMA) is home to ~15000 to ~25000 proglacial lakes (e.g., Furian et
al., 2021). Some of these lakes are also the sources of Glacial lake outburst floods (GLOFs),
which occur when the lake water is discharged catastrophically, causing significant damage to
communities and infrastructure and the geomorphology of downstream regions (e.g., Wilson et
al., 2019; Zheng et al., 2021; Sattar et al., 2022). Veh et al. (2019) showed that the flood peaks
from GLOFs can rival monsoon-fed discharges in rivers up to thousands of kilometers
downstream. Recently, Emmer et al. (2020) have shown that several thousand lives have been
claimed by a small number of GLOFs and associated mass movements, and many more people

suffer when major infrastructure is damaged by them (e.g., Lutzow et al., 2023).

The volume of a glacial lake is an important input parameter for many hydrological applications such
as modelling the severity of GLOF events (e.g., Rinzin et al., 2023; Emmer et al., 2022); estimating
glacier retreat when coupled with various minimalistic ice-flow models (Oerlemans and Nick, 2006);
and local small-scale hydropower production (e.g., Sattar et al., 2019). Unfortunately, glacial lakes
are often located in some of the most remote and challenging terrains, making the in-situ
measurement of their volumes extremely difficult. Consequently, the in-situ estimates of lake volume
exist only for a handful of lakes in the HMA (e.g., Haritashya et al., 2018; Zhang et al., 2023; Sharma

et al., 2018; Watson et al., 2020; Kapitsa et al., 2017).

Several studies have proposed power-law (non-linear) relationships between lake volume and
other lake parameters (i.e., area and/or mean depth) to estimate lake volume. These relationships
(scaling models) are derived by fitting an exponential/ polynomial curve to data representing
volume-area/ volume-mean depth data for multiple lakes (e.g., O’Connor et al., 2001; Zhang et al.,
2023; Huggel et al., 2002). Some also utilise mean lake surface width, volume and area (e.g.,

Munoz et al., 2020). Scaling models have been popular because of their simplistic formulation and
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ease of implementation on large, spatial scales. The scaling models proposed by O’Connor et
al. (2001), Huggel et al. (2002), and Fujita et al. (2013) were calibrated against the lake volume
and area from the Central Oregon Cascade Range, Swiss Alps, and Himalaya, respectively, and
Cook and Quincey (2015) derived a scaling relationship using a global dataset of lake volume
and area. Some scaling models have been derived for a specific lake using time series data of the
lake volume and area (e.g., Yao et al., 2012; Sharma et al., 2018). Wang et al. (2012) developed a
model using the volume and area data from twenty lakes in the Longbasaba and Pida regions
(in China), and Emmer and Vilimek (2013) calibrated their scaling model with volume and area data
from thirty-five lakes from the Peruvian Andes. Further, Zhang et al. (2023) calibrated their model
against the areas and volume data from 47 lakes across the Indian, Nepal, Bhutan and Tibetan
Himalaya. The scaling models that Munoz et al. (2020) and Qi et al. (2022) developed were among
the first to use lake surface width as an input parameter, along with volume and area, calibrating

them against data from glacial lakes in the Andes and the Tibetan Himalaya, respectively.

The uncertainty associated with the lake volume estimated using scaling models exponentially
increases as the lake area increases (e.g., Zhang et al., 2023) due to the non-linear nature of the
empirical relationship between lake volume and lake area. Therefore, the scaling models have been
reported to give unrealistic estimates of lake volume (i.e., more than three times the measured lake
volume in some cases) for individual lakes (e.g., Zhang et al., 2023). Additionally, Cook and
Quincey (2015) conclusively showed that lake volume and lake area are auto-correlated, which
can give a false impression of accuracy in the estimated lake volume. Hence, the use of lake area
in both the variables of Volume- Area (V-A) regression for proglacial lakes may create a
misleading impression about the quality of the data used in the relationship, and the high

correlation coefficients may misleadingly indicate reduced uncertainty in the V-A relation (e.g.,
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Cook and Quincey (2015); Haeberli et al., 2016). With over 5000 existing glacial lakes at present
and more predicted to form in the future, e.g., in the Karakoram region (Furian et al., 2021; Zheng et
al., 2021), it is important to develop a comprehensive modelling framework that addresses concerns
with the empirical volume-area scaling approaches and also constrains the level of uncertainty. In

section 4.2 we address the auto-correlation issue.

The Bayesian Calibration based models have been successfully used in many glaciological
applications, such as the estimation of ice thickness (Brinkerhoff et al., 2017; Werder et al., 2020);
estimation of supraglacial debris heat conductivity (Laha et al., 2022); optimisation of firn
densification models (Verjans et al., 2020); and inferring basal sliding parameters (Gopalan et al.,
2021). The calibration process is based on Bayes’ theorem of probability and allows combiningprior
knowledge of the system variable(s) with the fitting of a physical model to the observations (e.g.,

Werder et al., 2020).

This study presents a new Bayesian statistics-based numerical model (Bayesian Estimated Glacial
Lake Volume - BE-GLAV) to estimate proglacial lake volume. To our knowledge, ours is the first of

its kind among the existing glacial lake volume estimation models.

2 Materials and Methods

Our model (BE-GLAYV) assumes that at any point along the lake’s centreline, the cross-
sectional profile of the bed elevation of a proglacial lake can be approximated as parabolic or
trapezoidal in nature (Figure 1a). This is because the present lake bed was formerly under a
glacier whose cross-sectional geometry resembles a trapezium (e.g., Oerlemans, 1997). This

geometry works particularly well for lakes with thick sediment deposits on their beds and nearly
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constant sloping side walls. It is also a useful approximation for lakes that have U-shaped cross-
sections. We expect that most of the statistical uncertainty associated with this model—which we
determine directly for our sample of measured lakes— will occur for common U-shaped lake
cross sections, where there are anomalous extreme overdeepenings, or exceptional thicknesses of
deposited sediment (hence, shallowing), and other sharp departures from trapezoids. Another
source of the anomaly is the ice-ramps that extend under the water line from the connected
glacier’s terminus (Robertson et al., 2012). These ramps have been found to extend up to >500 m
from the calving termini of the connected glacier into the respective proglacial lake. The surfaces
of these ice ramps are undulating and covered with a thick layer of unsorted sediment derived
from supraglacial and englacial debris, lateral moraines and fluvial deltaic deposition (Robertson
et al., 2012). The sediment on the ice ramps reduces melting and, therefore, thinning of the
ramps, and can load the ramp to hinder flotation. Consequently, the ice ramps can remain intact a

few hundreds of metres in front of the calving termini (Robertson et al., 2012).

Throughout the paper, the phrase ‘present lake bed’ refers to the deglaciated area under the lake
at the time of bathymetric measurements. Consequently, for every cross-section, we have three
variables, namely lake base width (W,), lake depth (H), and side slope (1 = cotay + cotas)
(Figure 1a). The lake surface width at a particular cross-section (Ws) can be expressed in terms

of the variables as (Figure 1a):

W, =W, +AH 1)

Therefore, the volume (V) of a proglacial lake with n cross-sections is computed as:
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1 - 1
V= EO- 5(I'Vbl + Wsl)Hlx + Z?:ZZ 0. 5(['Vsi + Wbi)Hix + 3 0. S(an—l + Wsn—l)Hn—lx

()

Where, Wi, Wpi and H; are the lake surface width, base width and lake depth at cross-section i,

respectively. x represents 50 m grid resolution.
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Our model estimates the physically plausible values of W,, 4 and H for a cross-section by
minimising the difference between observed and modelled surface width for each grid point
along the lake’s centreline (Figure 1d). The minimization procedure was performed using

Bayesian calibration.

2.1 Bayesian Calibration

The Bayesian calibration approach identifies Wy, 2 and H as the free parameters and defines this parameter
set as 6. The calibration process relies on Bayes’ theorem (Eq. 2) that allows updating a probability

distribution P(6) based on observed data D:

P(D/0)P(6)

P(6/D) ===

©)

Where P@) is called the prior distribution, P(D/6) is called the likelihood distribution that
quantifies the difference between modelled and measured lake surface width, i.e., Ws and P(6/D)
is the posterior probability distribution and is the quantity that our model calculates. The term P(D)
is the marginal probability distribution of the data; is a constant term, independent of 6, that does

not affect P(6/D) and is therefore disregarded in our analyses (e.g., Brinkerhoff et al., 2017).

2.2 Estimation of P(0)

2.2.1 For Type A lakes
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By Type A lakes, we refer to those lakes where the ice thickness map of the corresponding
connected glacier (i.e., from a time when part of the lake’s current bed was beneath the glacier) is

available.

We use normal and weakly informative prior distributions about the initial values of 8 so that the
constraint of P@) on P(D/6) is minor (e.g., Verjans et al., 2020). To calculate P@®) for the grid
points along the lake’s centreline (Figure 1d), we first estimate the distribution for each of the free
parameters (i.e., Wy, 4 and H) at the grid points using an ice thickness map of a glacier from a time
when either the whole or a part of the current lake bed was glaciated (i.e., the light-green coloured
region in Figure 1d). Using the ice thickness and the corresponding surface elevation maps of the
glacier (Figure 1b), we estimate the maximum extent and the corresponding depth distribution of
the glacier bed overdeepening of which the lake is a part (i.e., the aqua coloured region in Figure
1b). We then delineate the centreline of the overdeepening and at every 50 m interval along the
centreline we estimate W5, Wy, 4, H, Wp/W; (R1) and H/Ws (R2) for the corresponding cross-
sections of the bed overdeepening, assuming that the depression (i.e., the aqua coloured region in
Figure 1c) is completely filled. We then estimate the mean (w, ur1, r2) and standard deviation (o,
or1, orz) Of 1, R1 and R2 at the 50 m apart grid points for the area shown in Figure 1c. We also
estimate the correlation coefficients for the pairs (Wp, H), (H, 4) and (W, 1), namely p1, p2 and ps,
respectively. pi1, p2 and ps are considered non-zero only when the total number of grid points in the
overdeepening area exceeds ten. Because the overdeepening and the lake are both parts of a single,

larger glacier bed depression, our model assumes that the mean, standard deviations, and
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correlation coefficients calculated above can be applied to the corresponding entities in the
present lake bed, which is the light-green coloured region shown in Figure 1d. The means and
standard deviations of 4, R1, R2 for all grid points (except for the extremes; see Figure 1d)
located along the centreline of the present lake bed (Figure 1d) are u;, ur1, ur2 and o;, ori, or2,
respectively. The minimum and maximum values of R2 (i.e., mg; and Mgy, respectively) are also
calculated for use in the posterior distribution, as explained in section 2.4. Similarly, within the
present lake-bed, the correlation coefficients for the pairs (Wp, H), (H, A) and (Wy, 1) are p1, p2
and ps, respectively. At the two grid points where the lake centreline ends, we assume H = 0, W,
= 0 and an undefined A. H is then calculated for each grid point along the centreline of the
present lake-bed (Figure 1d) by inferring depth values from the distributed depth map of the
glacier bed overdeepening. This map is produced by using the ice thickness and glacier surface
elevation for the previously glaciated region, which is now part of the lake (i.e., the green region
in Figure 1d). By linearly interpolating the depth values from the grid point that is closest to the
former glacier front and is located in the light-green region (i.e., X in Figure 1d), H is calculated

for the remaining grid points (i.e., those that are in the blue zone of Figure 1d).

The mean and standard deviation for 4 (i.e., «; and o;) stay constant at each grid point along the
lake's centreline (aside from the first and last) (Figure 1d). The mean and standard deviation for
W, is formulated as uw = Ws ur1 and ow = or1Ws, Where W is the lake surface width at the grid
point (Figure 1d). The mean for parameter H (i.e., uy) at every grid point is calculated as uy = H.
The standard deviation (on) of H at the grid point is assumed to be of the form:
ou=kH 4)

where, the value of the parameter k is set as 0.5 (i.e., we assume 50% margins around lake
depth). Finally, for every grid point lying along the lake’s centreline (Figure 1d), the prior

10
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probability distribution of & was formulated as a multivariate normal distribution with mean e

[0, pow, pr] @nd the covariance (Zy) a 3-by-3 matrix as shown below:

2
ow OwOHP1 020wP3
2
OwOyP1 oy 0302
2
0)0wpP3  0,0HP> 0),

The above procedure was followed for seven lakes (i.e., the lakes named in bold fonts) in Table

Sl

11
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Figure 1. Schematic representation outlining the process to estimate P(@) for Type A lakes (a-d);
aqua coloured regions represent the currently glaciated areas, the blue region represents the
region that was filled with water in the past as well as during the time of bathymetric surveys,
green regions represent the portion of the current lake bed that was glaciated in the past but is
currently part of the lake bed; a) assumption of trapezoidal-shaped lake cross-sections where
dashed red line represents the actual lake bed, free parameters are Wy, (base width), 4 (sidewall
slope parameter), H (lake depth). The lake surface width is Ws. Here, 1 is formulated as a
function of the slope angles (i.e., ap and a;) as A = cotap + cotay; b) top view of the lake’s 2-D
extent and the past ice thickness map of the region; yellow dots represent grid points at 50 m
intervals; c) the procedure to derive the marginal and the joint prior distribution of the free
parameters; d) schematic showing the necessary boundary conditions i.e., H=0, W,=0 and
undefined /; e) flowchart of the MCMC block of our model (see section 2.4). For Type A lakes,
variable V =3, else it is set to 2 (Eqn. 7); the Monte Carlo module is solved at every grid point
(yellow circle) located along the lake’s centreline at 50m intervals (Bottom left corner).
Identification of the flow in panel () MCMC block can be determined from the Roman

numerals.

2.2.2 For type B lakes

By Type B lakes, we refer to those lakes where the corresponding glacier ice thickness map is
unavailable, unlike the Type A counterparts. Our approach to calculating P(#) at grid points differs

slightly when historical ice thickness maps are unavailable. In this case, we use two free parameters

13
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(Wp and H) instead of three, with 4 being treated as a constant equal to two (i.e., the lake’s sidewalls
are assumed to have 45-degree slopes). Therefore, for these lakes, the free parameter set & consists of
two parameters, W, and H. To avoid limiting P@) on P(D/69), we assume normal and weakly
informative priors for the initial values of @ (i.e., W, and H) (e.g., Verjans et al., 2020). Except for the
first and last grid points, the prior distribution for H was modelled as a normal distribution with

mean uy = Hiae and standard deviation o4 = 0.5H (i.e., we assumed 50% margins about the
initial estimate of H). Where Hjqy. is equal to the mean lake depth as determined by the two
volume-area scaling models of Zhang et al. (2023) for the Himalaya and Kapista et al. (2017) for
the Tien Shan. These models were chosen because they were calibrated against the available in-
situ data (i.e., volume and area) in the respective regions. We establish a normal prior for W,
with a mean uw and standard deviation ow. The standard deviation of the observed lake surface
widths at the grid points is also set to be equal to ow. Since there is no prior information on the
lake geometry, we assume that uw equals the grid spacing of 50m. We further assumed that the
free parameters Wy, and H are independent of each other for lakes where there is a scarcity of past
ice-thickness maps of their corresponding glaciers. As a result, for each grid point along the
lake's centreline, the prior probability distribution of 4, i.e., P(6), was defined as a multivariate
normal distribution with a mean we [uw, un] and a 2-by-2 covariance matrix (X)) as shown

below:
g 0
0 of
Finally, the prior distribution of @ is formulated as a multivariate normal distribution:

P(0) ~ MVN (g, Zp) )

14
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2.3 Estimation of P(D/6)

Our model uses a normal likelihood function P(D/6) that quantifies the match between modelled

and observed lake surface widths:

_l(Wsm—Wso) 2

P(D/O) x ez & (6)

Where, Wy and Wy, represent modelled and observed lake surface widths, respectively, and o is
the variance. The variance sets the spread allowed for the model outputs when compared to
measured values and are calculated by taking 10% margins around the corresponding observed
surface widths (e.g., Verjans et al., 2020). Allowing for such spread is necessary because model—
observation discrepancy can result from various factors, including errors in measuring surface
widths from satellite imagery, uncertainty in estimating the mean and standard deviation of free
parameters, and uncertainty in modelled past ice thickness map of the glacier that covered a
portion of the lake’s current bed. Errors are also likely to be introduced by the measured volume,
depending on the survey style of the bathymetric measurements, track density, and interpolation
technique used in preparing 3-D bathymetric maps from point-based, single beam sonar survey

(Watson et al., 2020).

2.4 Estimation of P(6/D)

The posterior distribution P(@/D) gives our model’s probability distribution over the parameter
space (i.e., ) given the observed lake surface widths. In our model, with a weak informative

P(®), the distribution P(6/D) is substantially governed by P(D/6). Due to the paucity of any

15
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analytical form of P(@/D) for studied lakes, we investigate the parameter space to generate an
ensemble of &; approximating P(6/D) (e.g., Brinkerhoff et al. 2017; Verjans et al., 2020). This is
achieved efficiently by applying a gradient-free Markov Chain Monte Carlo (MCMC) algorithm,
Random Walk Metropolis (RWM) (Hastings, 1970). The posterior distribution of the free
parameter set is calculated at every grid point. We first estimate lake surface width for all grid
points using the grid point-specific initial estimates of .. The difference between modelled and
observed lake surface width is quantified by the likelihood, i.e., P(D/6). The posterior probability
(i.e., P(O/D))

is calculated following Eq. 3. At this point, the RWM algorithm starts, and the state of the chain,
6; (Figure 1e part (i)), is set to the original values of the free parameters, and the corresponding
posterior probability is saved as P(#; /D). Note that the j subscript denotes the iteration number,
which is equal to O at this initial step. The RMW algorithm then proposes a new 6;* from a
proposal distribution (Figure le part (ii)). Here, we assume the proposal distribution to be the
symmetric multivariate normal distribution centred on 8;. Consequently, the random selection of
6;* depends only on the current state 6; and the proposal variance (Z,rop in Figure 1e). For the
parameter set 6;*, the model recalculates the lake surface width for the grid point and P(6*/D) is
computed (Figure le part (iii) & part (iv)). From there, the proposed 6;* is either accepted or
rejected in the ensemble approximating P(6/D) (vi; Figure 1e part (vi)). This decision depends on
the ratio a = P(0*/D)/ P(6/D) (Figure 1e part (v)). The RWM then selects a random number u
from the uniform distribution U(0,1) and ;* is accepted in the ensemble only if u > o (Figure 1e
part (vi)). The saved set becomes the updated current status for the next iteration 6., with its
associated P(6;+1/D) (Figure 1le part (vii) & part (viii)). The algorithm iterates this process and

reaches a final posterior distribution over 6. The RWM algorithm has the property that the chain

16
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will ultimately converge to a stationary distribution representing the posterior P(6/D). Thus, after
a sufficiently high number of iterations of the algorithm, the ensemble of parameter sets is
representative of P(@/D). In our study, we discovered that 5000 iterations are sufficient to
achieve convergence. The proposal covariance X,rop must account for inter-dependence among
the different components of ; i.e., the value of one free parameter can influence the value of
another free parameter for the model to reach a good match with the observed data. 2o, Can
capture this dependence between parameters and, for optimality, it is updated every given

number of iterations (100 in our study) using Eqg. (7) (Rosenthal, 2011):

2.382
Z'prop =V 2eov (7)

Where X, is the covariance matrix between the model’s free parameters at this stage of the
iterative chain, and V is the number of free parameters, which is three for lakes with a historical
ice thickness map of connected glaciers, and two for those that do not.

The ensemble of P@@/D) was then checked for the presence of physically unrealistic parameter
sets before computing the posterior probability distribution. This was carried out following a
two-step approach wherein we first removed all the s with non-positive values for any free
parameters (i.e., Wy, 4, H). We then separated the lakes where the historical map of the
associated glacier's ice thickness was available and those without. For lakes with ice thickness
map, we eliminated 0s where the relationship between the simulated lake depth and the
associated observed lake surface width was outside the range [mg2, Mg2] (See section 2.2 for
more information on mg, and Mgy). For the rest of the lakes with no ice thickness map, we first
estimated the means of mg, and Mgy (i.e., umg2 and uMg,, respectively) and rejected s where the
ratio of modelled lake depth to observed lake surface width was not in the interval [umeo, tMro).

The remaining 6s in the ensemble after the above filtering process were used to estimate the

17
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posterior distribution. After obtaining the posterior distributions of the free parameter set at every
grid point along the lake’s centreline, we generate an ensemble of lake volume estimates using

Eq. (2). Finally, the mean of the ensemble is our modelled estimate of lake volume.

3 Data and Validation sites

We validated our model, assessing its effectiveness across 66 proglacial lakes in the central and
eastern Himalaya and the Tien Shan (Figure S1a and Figure S1b). Table S1 provides information
on the lake parameters of all 66 lakes. The glacier ice thickness and corresponding surface
elevation were inferred from the Global consensus ice thickness dataset of Farinotti et al. (2019)

and Millan et al. (2022).

4 Results and Discussion

4.1 Modelled lake volumes

Modelled and measured estimates of all 66 lake’s volume agree well with each other, with a
mean, absolute, and relative uncertainty of ~14% (Table S1). Lakes Bechung and Aksu 1 had the
largest (~61.2 %) and the smallest (0.3%) error in the predicted lake volume, respectively. The
inventory of 66 lakes was approximately equally divided into four categories based on their lake
area (Figure 2). Except for Lake Bechung, the percentage deviation of our modelled lake

volumes from measured is consistently within the range of ~ -36% to ~ 36% (Figure 2b; Table
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S1). In addition to that, the results were unchanged when a coarse grid resolution of 50-100 m

was implemented.

In our further treatment, we use the term error to mean the percentage departure of an individual
measured lake volume from its modeled volume. Uncertainty then carries a statistical
significance of how the actual (but unmeasured) volumes of an unknown population of lakes
may vary from the modelled mean for a given lake area, whereas the term “maximum error”
could, for instance, refer to the possible greatest outliers of the shallowest and deepest lakes for a
given lake area in any comparable population of about 66 unmeasured lakes in any location

where glacial valley hypsometry closely resembles that in the Himalaya and Tien Shan.

4.2 Comparison with other models

Figure 2 and Table S3 show the performance of our model with respect to ten previously
published models (listed in Table S2) that are essentially power-law relations between lake

volume and lake area.

The minimum error in lake volume simulated by each scaling model ranged from ~0.1% to 92%,
while the maximum error ranged from ~92% to ~1779% (Table S3). The large value of the
maximum bound of the error indicates the unreliability of the scaling models for individual
lakes. Lake volumes modelled using Fujita et al. (2013) and Yao et al. (2012) approaches, both
calibrated using volume-area data from Himalayan lakes, showed a systematic uncertainty of at

least 130% and 250%, respectively, for all lakes in the Tien Shan (Table S3). This demonstrates
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that using some scaling models in places where they have not been calibrated with corresponding

observed lake volume-area data is dubious.

The scaling model of Zhang et al. (2023) gave the overall third-best estimate of proglacial lake
volume in the Himalayan region with a minimum and maximum error of 0.1% and 233%,
respectively, while the scaling model developed by Kapista et al. (2017) gave the best estimate
of lake volume for all the lakes located in the Tien Shan region (i.e., maximum error < ~10%)
(Table S3). This is likely due to the inclusion of in-situ volume-area data from 47 lakes in the

case of Zhang et al. (2023) and 50 for Kapista et al. (2017).

The scaling approach of Emmer and Vilimek (2013) performed second best by being among the
top five models for 61 out of 66 lakes (i.e., 48 lakes in Tien Shan and 13 in the Himalaya)
(Figure S3). We were surprised by this outcome because that model was calibrated using volume
and area data from lakes in the Peruvian Andes (Emmer and Vilimek, 2013). This suggests
morphometric similarities between the Andes and the HMA, which could be attributed to active,
receding glaciers and concurrent intense tectonism in both regions. However, our analysis is
restricted due to the poor quality of existing knowledge about depth erosion by glaciers and the
overdeepened topography of their rock beds (Haeberli et al., 2016). We believe that more
research is needed to support the above hypothesis, such as running our model on Peruvian

Andes lakes and comparing its performance to that of Emmer and Vilimek (2013).

Our model was among the top five performing models at 65 out of 66 lakes with minimal prior
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353 tuning against measured lake area-volume data, unlike scaling models. In our volume
estimates, the maximum and minimum errors were ~1% and ~61%, respectively (Figure 2 and
Table S3; Supplementary). Compared to all the scaling models, our model's projected lake
volume was among the two closest to the observed volume for Lake Bechung (~61% deviation
from measured volume), even with the high magnitude of error. The outcome was the same for
model runs at higher spatial resolutions of 30m and 20m, suggesting that sometimes a lake's

morphometry might be too complicated to simulate for any model despite its capability.

Besides volume, BE-GLAV can estimate depth along the lake’s centreline. Bathymetry was
available for only 17 lakes located in the Himalaya. Unlike volume, modelled and measured lake
depth was in good agreement with each other only for eight lakes (Figure S2). Out of these eight
lakes, Thulagi, Imja, Lower Barun, South Lhonak, Bechung, Luggye and Ranzeriaco were
classified as Type A lakes, and Magiongco was classified as Type B lake (Figure S2; Table S1).
For these eight lakes, the RMS uncertainty between modelled and measured lake depth along the
lake centreline ranges between 4m to 17m (Figure S2). Discrepancies between modelled and
measured lake depth (i.e., along the lake centerline) were found to be large near the calving front.
However, the lake depth near the glacier terminus is not only difficult to measure but, at many
times, is also marred with uncertainties due to the presence of ice ramps that extend laterally up
to at least a hundred meters from the calving front (Haeberli et al., 2016). Additionally, due to
the dynamic nature of the region near the glacier terminus, the lake depth is estimated via spatial
interpolation of point-based lake depth values that were measured relatively further away from

the glacier terminus. These factors contribute to the uncertainty in measured lake depth near the
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glacier terminus. However, this does not pose an issue, because the main aim of our paper is to

estimate lake volume and not lake bathymetry along the lake centerline.

Results demonstrate that, unlike scaling models where the level of uncertainty in the lake volume
is unpredictable, BE-GLAV can restrict the upper limit of the error in volume (likely due to the
Bayesian calibration procedure) and do that with minimal pre-calibration against the regional,

observed lake volume, and area data.

For every Type B lake, we formulated the prior distribution of lake-depth at every gridpoint (i.e.,
along the lake centerline) as a Gaussian distribution centered around Hiae (Where, Hiae is the
mean depth that is derived using the V-A scaling models proposed by Zhang et al. (2023) and
Kapitsa et al. (2017) for lakes located in the Himalaya and the Tien Shan, respectively).
Interestingly, despite using auto-correlated variables (i.e., lake volume and lake area) in
calculating Hiae, the Bayesian calibration part of our model was able to restrict the maximum
level of error for individual lake volumes as well as the 95% confidence level of global
uncertainty in the modelled lake volume. This shows that BE-GLAV provides a robust way-
forward to estimate proglacial lake volume by using mean lake depth derived from a V-A scaling
model. Such a feat was earlier not possible by solely using V-A scaling techniques because lake
area and lake volume are autocorrelated (discussed in section 1), which can give a false
impression of accuracy in the corresponding estimated lake volume (e.g., Cook and Quincey,

2015; Haeberli et al. (2016)).
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424 1t is crucial to highlight that BE-GLAV, as the geometry is presently developed, cannot be
425  applied to supraglacial, ice-marginal, or extremely shallow lakes (depth <5-10 m) since our
426 assumption regarding the trapezoidal or parabolic structure of the lake cross-section may not
427 hold true for such lakes.
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Figure 2. For simplicity, the set of 66 lakes was divided into 4 parts based on lake area (a,c,e,g).
Boxplot of % error (i.e., % deviation from measured) of modelled lake volumes for lakes with
area > 0.2 km? (@), 0.05 km?<=area<0.2 km? (c), 0.03 km?<=area<0.05 km? (), area>0.03 km?
(9). The red dots in a, c, e, g represent the % error in lake volumes modelled by BE-GLAV; Box
plot of measured lake area for lakes with area > 0.2 km? (b), 0.05 km?<=area<0.2 km? (d), 0.03
km?<=area<0.05 km? (f), area>0.03 km? (h). In all the box and whisker plots, the ends of the
whiskers mark the +/- 3o limits beyond which any data point was treated as an outlier. The

vertical ends of the boxes represent the Interquartile range (I1QR).

5 Conclusions

We present a proof of concept where a new Bayesian calibration-based numerical model (BE-
GLAV) is used to estimate the volume of a proglacial lake. Assuming the lake cross-section to
be trapezoidal, BE-GLAV minimises the difference between modelled and measured lake
surface width. Our modelled volumes were in good agreement with that measured with a mean
absolute uncertainty of ~14%, and it was able to limit the maximum error to ~61%, unlike the
large errors of the scaling models. A model intercomparison experiment showed that all models
(scaling and our method) showed acceptable performance (about average) for lakes with
extremely shallow bathymetry (<10 m) for more than half of the current lake extent (e.g.,
Bechung).

BE-GLAYV could be a good—we think better— alternative to scaling models for regions where
there is a paucity of bathymetric surveys. It is easy to implement with minimal calibration, unlike

the scaling counterparts. We have indirect evidence that BE-GLAV may perform well for the
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Peruvian Andes, but we would need to test it there as well as in areas where active tectonics and

valley hypsometry could differ from HMA.

6 Acknowledgments

PG and UKH acknowledge time funded by the University of Dayton’s Mann Endowed Chair in
the Natural Sciences. UKH and JSK were also supported by the NASA High Mountain Asia
Grant 80NSSC19K0653 and the NASA Interdisciplinary Research in Earth Science grant
80ONSSC18K0432. AS acknowledge DST Inspire Faculty Award for the support.

Open Research

The model code and the input data used for Type A lakes can be found at (Gantayat, 2023a). The
model code and the input data used for Type B lakes can be found at (Gantayat, 2023b). Both the
model codes have been written in MATLAB. The figures were prepared using ArcMap and

MATLAB.

References
Azam, M.F., Wagnon, P., Berthier, E. & Kargel, J.S. (2018), Review and status of mass changes

of Himalayan-Karakoram glaciers, Journal of Glaciology, doi: 10.1017/jog.2017.86.

Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S.,

Fujita, K., Scheel, M., Bajracharya, S. & Stoffel, M. (2012), The State and Fate of Himalayan

Glaciers. Science, 336, 310-314.

26



475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

manuscript submitted to Earth and Space Science

Brinkerhoff, D.J, Aschwanden, A., & Truffer, M. (2016), Bayesian inference of subglacial
topography using mass conservation. Frontiers in Earth Science, 4,

doi:10.3389/feart.2016.00008

Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J.S., Haritashya, U.K., & Watson, C. S. (2020),
Annual 30-meter Dataset for Glacial Lakes in High Mountain Asia from 2008 to 2017. Earth

System Science Data, 13, 741-766. https://doi.org/10.5194/essd-13-741-2021

Cook, S. J. & Quincey, D. J. (2015), Estimating the volume of Alpine glacial lakes. Earth

Surface Dynamics, 3, 559-575, https://doi.org/10.5194/esurf-3-559-2015

Emmer, A., & Vilimek, V. (2013), Review article: lake and breach hazard assessment for
moraine-dammed lakes: an example from the cordillera blanca (Peru). Natural Hazards Earth
System Science, 13 (6), 1551-1565. doi:10.5194/nhess-13-1551-2013

Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H., & Huggel, C. (2020), 70 years of lake
evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the
future. Geomorphology, 365, 107178, ISSN 0169-555X,

https://doi.org/10.1016/j.geomorph.2020.107178

Emmer, A., Allen, S. K., Carey, M., Frey, H., Huggel, C., Korup, O., Mergili, M., Sattar, A.,
Veh, G., Chen, T. Y., Cook, S. J., Correas-Gonzalez, M., Das, S., Diaz Moreno, A., Drenkhan,
F., Fischer, M., Immerzeel, W. W., lzagirre, E., Joshi, R. C., Kougkoulos, 1., Kuyakanon Knapp,

R., Li, D., Majeed, U., Matti, S., Moulton, H., Nick, F., Piroton, V., Rashid, I., Reza, M., Ribeiro

27


https://doi.org/10.5194/essd-13-741-2021
https://doi.org/10.5194/esurf-3-559-2015
https://doi.org/10.1016/j.geomorph.2020.107178

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518
519
520
521

manuscript submitted to Earth and Space Science

de Figueiredo, A., Riveros, C., Shrestha, F., Shrestha, M., Steiner, J., Walker-Crawford, N.,
Wood, J. L., & Yde, J. C. (2022), Progress and challenges in glacial lake outburst flood research
(2017-2021): a research community perspective. Natural Hazards Earth System Science, 22,

3041-3061, https://doi.org/10.5194/nhess-22-3041-2022

Farinotti, D., Huss, M., First, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A.
(2019), A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature

Geoscience, 12, 168-173. doi:10.1038/s41561-019-0300-3

Fujita, K., Sakai, A., Takenaka, S., Nuimura, T., Surazakov, A. B., Sawagaki, T., &
Yamanokuchi, T. (2013), Potential flood volume of Himalayan glacial lakes. Natural Hazards

Earth System Science, 13, 1827-1839. https://doi.org/10.5194/nhess-13-1827-2013

Furian, W., Maussion, F., & Schneider, C. (2021), Projected 21st-Century Glacial Lake

Evolution in High Mountain Asia. Frontiers in Earth Science, 10, doi:10.3389/feart.2022.821798

Gopalan, G., Hrafnkelsson, B., Adalgeirsdottir, G., & Palsson, F. (2021), Bayesian Inference of
Ice Softness and Basal Sliding Parameters at Langjokull. Frontiers in Earth Science, 9.

https://www.frontiersin.org/articles/10.3389/feart.2021.610069

Haeberli, W., Linsbauer, A., Cochachin, A., Salazar, C., & Fischer, U. H. (2016), On the
morphological characteristics of overdeepenings in high-mountain glacier beds. Earth Surface
Process and Landforms, 41, 1980-1990. doi: 10.1002/esp.3966

28


https://doi.org/10.5194/nhess-22-3041-2022
https://doi.org/10.5194/nhess-13-1827-2013
https://www.frontiersin.org/articles/10.3389/feart.2021.610069

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

manuscript submitted to Earth and Space Science

Haritashya, U.K., Kargel, J.S., Shugar, D.H., Leonard, G.J., Strattman, K., Watson, C.S., Shean,
D., Harrison, S., Mandli, K.T., Regmi, D. (2018), Evolution and Controls of Large Glacial Lakes

in the Nepal Himalaya. Remote Sensing, 10, 798. https://doi.org/10.3390/rs10050798

Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57, 97-109

Huggel, C., K&ab, A., Haeberli, W., Teysseire, P., & Paul, F. (2002), Remote sensing-based
assessment of hazards from glacier lake outbursts: A case study in the Swiss alps. Canadian

Geotechnical Journal, 39 (2), 316-330. doi:10.1139/t01-099

Kapitsa, V., Shahgedanova, M., Machguth, H., Severskiy, 1., & Medeu, A. (2017), Assessment
of evolution of mountain lakes and risks of glacier lake outbursts in the djungarskiy (Jetysu)
Alatau, central Asia, using landsat imagery and Glacier Bed topography modelling. Natural

Hazards Earth System Science, 17, 1837-1856. doi:10.5194/nhess-2017-134

Laha, S., Winter-Billington, A., Banerjee, A., Shankar, R., Nainwal, H., & Koppes, M. (2023),

Estimation of ice ablation on a debris-covered glacier from vertical debris-temperature

profiles. Journal of Glaciology, 69(273), 1-12. doi:10.1017/jog.2022.35

29


https://doi.org/10.3390/rs10050798

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

manuscript submitted to Earth and Space Science

Loriaux, T., & Casassa, G. (2013), Evolution of glacial lakes from the Northern Patagonia
Icefield and terrestrial water storage in a sea-level rise context. Global Planetary Change, 102,

33-40. doi:10.1016/j.gloplacha.2012.12.012

Litzow, N., Veh, G., & Korup, O. (2023), A global database of historic glacier lake outburst

floods. Earth System Science Data, 15, 2983-3000, https://doi.org/10.5194/essd-15-2983-2023

Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022), Ice velocity and thickness of the

world’s glaciers. Nat. Geosci. 15, 124-129. https://doi.org/10.1038/s41561-021-00885-z

Mufioz, R., Huggel, C., Frey, H., Cochachin, A., & Haeberli, W. (2020), Glacial Lake depth and
volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru. Earth

Surface Processes and Landforms, 45 (7), 1510-1527. doi:10.1002/esp.4826

Nick, F. & Oerlemans, J. (2006), Dynamics of calving glaciers: comparison of three models.

Journal of Glaciology, 52, 177.

O’Connor, J. E., Hardison, J. H., & Costa, J. E. (2001), Debris Flows from Failures of Neoglacial

— Age Moraine Dams in the Three Sisters and Mount Jefferson Wilderness Areas, Oregon,

Professional Paper1606, U.S. Geological Survey, Reston, 93.

30


https://doi.org/10.5194/essd-15-2983-2023
https://doi.org/10.1038/s41561-021-00885-z

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579
580
581
582

583

584

585

586

manuscript submitted to Earth and Space Science

Oerlemans, J. (1997), A flowline model for Nigardsbreen, Norway: Projection of future glacier
length based on dynamic calibration with the historic record. Annals of Glaciology, 24, 382-389.

doi:10.3189/S0260305500012489

Gantayat, P. (2023a). Model code for type A lakes [Software]. Zenodo.

https://doi.org/10.5281/zenodo0.10155265

Gantayat, P. (2023b). Model code for type B lakes [Software]. Zenodo.

https://doi.org/10.5281/zen0do0.10157362

Rinzin, S., Zhang, G., Sattar, A., Wangchuk, S., Allen, S.K., Dunning, S., & Peng, M. (2023),
GLOF hazard, exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes
in the Bhutan Himalaya. Journal of Hydrology, Volume 619, 2023, 129311, ISSN 0022-1694,

https://doi.org/10.1016/j.jhydrol.2023.129311

Robertson, C.M., Benn, D.I., Brook, M.S., Fuller, IC., & Holt, K.A. (2012), Subaqueous calving
margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National
Park, New Zealand. Journal of Glaciology, 58(212), 1037-1046, doi:10.3189/2012J0G12J048

Qi, M., Liu, S., Wu, K., Zhu, Y., Xie, F., Jin, H. (2022), Improving the accuracy of glacial lake
volume estimation: A case study in the poiqu basin, central Himalayas. J. Hydrol. 610, 127973.

doi:10.1016/j.jhydrol.2022.127973

31


https://doi.org/10.5281/zenodo.10155265
https://doi.org/10.5281/zenodo.10157362
https://doi.org/10.1016/j.jhydrol.2023.129311

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

manuscript submitted to Earth and Space Science

Rosenthal, J. (2011), Optimal Proposal Distributions and Adaptive MCMC. Handbook of
Markov Chain Monte Carlo, edited by: Brooks, S., Gelman A., Jones G., and Meng X,

Chapman and Hall, Boca Raton, USA, 93-112

Sattar, A., Goswami, A. & Kulkarni, A.V. (2019), Application of 1D and 2D hydrodynamic
modelling to study glacial lake outburst flood (GLOF) and its impact on a hydropower station in

Central Himalaya. Natural Hazards, 98, 817. https://doi.org/10.1007/s11069-019-03747-5

Sattar, A., Haritashya, U. K., Kargel, J. S., & Karki, A. (2022), Transition of a small Himalayan
glacier lake outburst flood to a giant transborder flood and debris flow. Scientific reports, 12(1),
12421.

Sharma, R.K., Pradhan, P., Sharma, N.P., & Shreshta, D.G. (2018), Remote sensing and in situ-
based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India. Nat

Hazards, 93, 393—409. https://doi.org/10.1007/s11069-018-3305-0

Shugar, D.H., Burr, A., Haritashya, U.K., Kargel J. S., Watson, C.S., Kennedy, M.C., Bevington,
A.R., Betts R.A., Harrison, S. & Strattman, K. (2020), Rapid worldwide growth of glacial lakes

since 1990. Nature Climate Change, 10, 939-945. https://doi.org/10.1038/s41558-020-0855-4

Veh, G., Korup, O., & Walz, A. (2019), Hazard from Himalayan glacier lake outburst floods.

PNAS, 117(2), 907-912. https://doi.org/10.1073/pnas.191489811

32


https://doi.org/10.1007/s11069-019-03747-5
https://doi.org/10.1007/s11069-018-3305-0
https://doi.org/10.1038/s41558-020-0855-4

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

manuscript submitted to Earth and Space Science

Verjans, V., Leeson, A. A., Nemeth, C., Stevens, C. M., Kuipers Munneke, P., Noél, B., & van
Wessem, J. M. (2020), Bayesian calibration of firn densification models. The Cryosphere, 14,

3017-3032. https://doi.org/10.5194/tc-14-3017-2020

Wang, X., Liu, S., Ding, Y., Guo, W., Jiang, Z., Lin, J.,, & Han, Y. (2012), An approach for
estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using
remote-sensing  data. Natural Hazards Earth System Science, 12(10), 3109-3122.

doi:10.5194/nhess-12-3109-2012

Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and
Tang, Z. (2020), Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from

Landsat images. Earth System Science Data, 12, 21692182, https://doi.org/10.5194/essd-12-

2169-2020

Werder, M., Huss, M., Paul, F., Dehecq, A., & Farinotti, D. (2020), A Bayesian ice thickness
estimation model for large-scale applications. Journal of Glaciology, 66(255), 137-152.

d0i:10.1017/jog.2019.93

Wilson, R., Harrison, S., Reynolds, J., Hubbard, A., Glasser, N.F., Windrich, O., Anacona, P.1.,
Mao, L., & Shannon, S. (2019), The 2015 Chileno Valley glacial lake outburst flood, Patagonia.
Geomorphology, 332, Pages 51-65, ISSN 0169-555X,

https://doi.org/10.1016/j.geomorph.2019.01.015

33


https://doi.org/10.5194/tc-14-3017-2020
https://doi.org/10.5194/essd-12-2169-2020
https://doi.org/10.5194/essd-12-2169-2020
https://doi.org/10.1016/j.geomorph.2019.01.015

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

manuscript submitted to Earth and Space Science

Yao, X., Liu, S., Sun, M., Wei, J., and Guo, W. (2012), Volume calculation and analysis of the
changes in moraine-dammed lakes in the north Himalaya: a case study of Longbasaba lake,

Journal of Glaciology, 58, 753-760

Zemp, M., Huss, M., Thibert, E. et al. 2019, Global glacier mass changes and their contributions

to sea-level rise from 1961 to 2016. Nature, 568, 382—386. https://doi.org/10.1038/s41586-019-

1071-0

Zhang, G., Bolch, T., Yao, T., Rounce, D. R., Chen, W., Veh, G. (2023), Underestimated mass
loss from lake-terminating glaciers in the greater Himalaya. Nature Geoscience, 16, 333-338.

doi:10.1038/s41561-023-01150-1

Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., & Stoffel, M. (2021), The 2020
glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and

risk assessment. The Cryosphere, 15, 3159-3180, https://doi.org/10.5194/tc-15-3159-2021

34


https://doi.org/10.1038/s41586-019-1071-0
https://doi.org/10.1038/s41586-019-1071-0
https://doi.org/10.5194/tc-15-3159-2021

