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Abstract15

We investigate the applicability of deep learning methods for reconstructing daily weather16

data. Inspired by video inpainting, we propose a novel method, WeRec3D, which uti-17

lizes a three-dimensional convolutional neural network. Our approach was developed it-18

eratively by evaluating six modeling improvement techniques. The resulting method re-19

duces the validation error to 48% compared to the baseline. Additionally, we demonstrate20

the impact of the spatial distribution of observations on reconstruction accuracy and pro-21

pose a potential integration with the analogue resampling method. WeRec3D is trained22

and validated in a self-supervised manner using ERA5’s surface temperature and pres-23

sure data over Europe. On a hold-out set from 1950 to 1954, the validation results in24

an MAE of 1.11 °C and 199 Pa. As a case study, we reconstruct the 1807 heat wave and25

validate it using a leave-one-out method in space. Compared to the original data, the26

reconstructed time series exhibit a correlation of at least 0.91, with a maximum normal-27

ized RMSE and standard deviation delta of 0.58 and 0.51 respectively. To the best of28

our knowledge, this is the first study to investigate weather reconstruction using deep29

learning algorithms, proposing video inpainting as a novel approach for reconstructing30

missing weather information.31

Plain Language Summary32

We explore how deep learning can help reconstruct daily weather data. Inspired33

by techniques used to fill in missing parts of videos, we introduce a new method called34

WeRec3D, which uses a type of deep learning model that processes data in three dimen-35

sions. We improved our approach by evaluating six different techniques, resulting in a36

combination that is twice as accurate than our initial attempt. We further show how the37

location of weather observations affects the accuracy of our reconstructions and suggest38

a potential combination of our method with another technique from the realm of weather39

reconstruction. WeRec3D is trained and tested using surface temperature and pressure40

data over Europe. Our model achieves an average error of 1.11 °C for temperature and41

199 Pa for pressure tested on the period during 1950 to 1954. As an example, we recon-42

struct the 1807 heat wave and validate it using a specific method that leaves out one area43

at a time. The results show a strong correlation with actual data and low error rates.44

This study is the first to use deep learning for weather reconstruction, proposing a new45

way to fill in missing weather data utilizing video inpainting.46

1 Introduction47

The recent surge in artificial intelligence (AI) has greatly intensified interest in the48

use of AI technologies for meteorological applications (Schultz et al., 2021). Machine learn-49

ing (ML) approaches are increasingly being used to extract patterns and insights from50

the ever-growing stream of geodata (Reichstein et al., 2019). In this paper, we investi-51

gate the applicability of deep learning (DL) methods specifically for the task of weather52

reconstruction.53

Extreme weather events have always occurred in the past. Researchers recorded and doc-54

umented instrumental meteorological observations in analogue logbooks as early as the55

17th century (Brönnimann et al., 2019; Camuffo et al., 2023). Such data is extremely56

valuable for climate research. Historical instrumental records of past extremes can im-57

prove our understanding of climate variability and its mechanisms. For this reason, many58

such logbooks have been collected, digitized, and processed in recent decades (Brugnara59

et al., 2020; Pfister et al., 2019). However, past meteorological observations only have60

limited spatial validity. In other words, they only describe the local weather in the area61

of the respective measuring station. This is, however, not enough to gain a better un-62

derstanding of climate and to be able to run impact models which require spatially and63

temporally complete meteorological fields (Flückiger et al., 2017; Rössler & Brönnimann,64
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2018). Such detailed representations can be created from historical observations by means65

of weather reconstruction.66

In this study, we consider weather reconstruction as the process of extending daily grid-67

ded fields of variables such as temperature or pressure backward in time. Various stud-68

ies have already performed daily weather reconstructions for Europe based on the ana-69

logue resampling method, with data dating back to the 18th century (Pappert et al., 2022;70

Pfister et al., 2020; Imfeld et al., 2023).71

Recently, methods from the field of deep learning have found their way into climate sci-72

ence (Gong et al., 2022; Schultz et al., 2021). For example, Kadow et al. (2020) and Yao73

et al. (2023) used image inpainting approaches from the realm of computer vision to re-74

construct monthly climate data. Compared to monthly averages, daily observations show75

stronger temporal dependencies. Therefore, these cannot be modeled using an image in-76

painting method. Rather, in this paper we investigate the applicability of video inpaint-77

ing as a new method for weather reconstruction. Video inpainting functions in a sim-78

ilar way to classic inpainting but operates simultaneously on several successive frames79

of a data stream instead of just one image at the time. Due to this additional tempo-80

ral dimension, this method shares common characteristics with weather reconstruction.81

Both attempt to explore the spatial-temporal relationships between existing and miss-82

ing data.83

One of the main limitations of inpainting is that the general performance decreases as84

the percentage of missing parts increases (Sun et al., 2022). For historical weather re-85

construction, one deals with missing rates of ±99%, considering a spatial grid over Eu-86

rope with a resolution of 1◦×1◦. Thus, this is not expected to be handled accurately87

by an unmodified video inpainting approach. To address this challenge, we propose a novel88

deep learning-based weather reconstruction method, WeRec3D, based on a three-dimensional89

convolutional neural network. In contrast to traditional meteorological techniques that90

operate on anomalies (Qian et al., 2021), our method processes the climatology. It lever-91

ages an incremental pre-training approach to gradually tackle high missing rates. The92

use of spatially moving window sampling increases the number and variability of train-93

ing examples, and thus amplifies the generalization capability. Elevation data - as a fur-94

ther predictor - of the corresponding areas support the orientation. To guide the learn-95

ing process to a physically plausible local optimum, we apply a soft constraint to the loss96

function.97

Within our experiments, we operate on 2-meter temperature and sea level pressure data98

from two periods. On the one hand, reanalysis data from the recent past (1950 to 2020)99

are used to train and initially validate our algorithm. These fully observed variables are100

artificially masked and fed to the model to learn the conditions on which the weather101

is based. On the other hand, we use historical weather records from the year 1807. These102

spatially and temporally incomplete data are reconstructed by the trained model to demon-103

strate its performance. The historic summer of 1807 was exceptionally warm in Europe104

at that time. With an anomaly of +2.15°C, it was the warmest Alpine summer between105

1500 and 1900 in the reconstruction by Casty, Wanner, et al. (2005). Due to the unusu-106

ally high temperatures, this summer represents an interesting period for climate and weather107

research.108

To the best of our knowledge, this is the first study to investigate weather reconstruc-109

tion using deep learning algorithms.110

2 Data111

As data basis for training, we used 2-meter temperature (ta) and mean sea level112

pressure (slp) from the ERA5 data set (Hersbach et al., 2020). ERA5 is a global reanal-113

ysis with an hourly temporal resolution and a spatial resolution of 0.25◦ × 0.25◦. We114

limited our analysis to an area of 33N to 73N and 24W to 44E and a time span from 1950115

to 2020. However, the data within this period show a different statistical distribution116

than is the case for the inference year 1807. This manifests itself in a temperature trend117
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within the modern time span. Furthermore, present-day ERA5 temperatures are gen-118

erally warmer than temperature observations in the early 19th century (Pappert et al.,119

2022; Imfeld et al., 2023). For this reason, we performed domain-specific preprocessing120

applied in other weather reconstruction attempts to align these data with the statisti-121

cal distribution of the inference variables.122

Firstly, the temporal resolution of the hourly reanalysis data was adjusted to daily mean123

values. Further, we reduced the spatial resolution to 1◦×1◦ by average pooling. In do-124

ing so, neighbouring cells within a square are combined and replaced by a cell that cor-125

responds to their average. This reduces the size of the matrix to be processed by a fac-126

tor of 16, making computation significantly less expensive. We then ensured that the tem-127

perature data did not contain any trends in the same way as done by Imfeld et al. (2023).128

To do so, we calculated the zonal averages considering only land areas from the ERA5129

temperature data. For each latitude, the average of the longitudes was calculated to ob-130

tain zonal averages. A linear regression model was then fitted over time to the land-only131

zonal mean temperature values, resulting in a slope. This slope was subtracted from the132

ERA5 daily temperature data for each corresponding grid cell, centered on the year 1985.133

To account for the higher temperatures in recent data, the climate change signal was sub-134

tracted from the training data. As in Pappert et al. (2022), we used the EKF400v2 re-135

analysis to determine this signal. The EKF400v2 is a global monthly climate reconstruc-136

tion (Valler et al., 2021). As this covers the last 400 years, it can be used to estimate137

the temperature difference between the historical and modern time period. Specifically,138

we calculated the signal by subtracting the zonally averaged EKF400v2 temperature over139

land from the zonally averaged temperature of the training period over land. This re-140

sulted in a difference, which was subtracted from the processed ERA5 temperature for141

each latitude. Next, we divided the preprocessed data into three portions (training, val-142

idation, test) according to the block sampling presented by Schultz et al. (2021). These143

range from 1965 to 2020 (training), 1955 to 1964 (validation), and 1950 to 1954 (test)144

respectively. The first and largest block was used to train our models. The second was145

used to examine the quality of the individual methods comprising WeRec3D. The test146

set was used exclusively to assess how well our method is expected to perform on the his-147

torical observations. Since the scales of the weather variables (°C, Pa) have a significantly148

different order of magnitude, we performed a z-normalization to transform them into a149

similar range of values.150

Brönnimann (2022b) compiled a set of stations measuring temperature and pres-151

sure over Europe in 1807. The station locations were chosen so that no more than one152

time series occurs per 1◦ × 1◦ grid cell. In our study, we used a collection of weather153

data based on this list. Table 1 lists our measuring stations and Figure 1 visualizes their154

position in Europe. The historical measurements show further differences with respect155

to the processed ERA5 grid data. On the one hand, the local conditions of the stations156

may have changed, on the other hand, the measuring instruments and observation meth-157

ods are not the same as today. In order to account for these biases, we used homogenised158

data analogous to the work of Pappert et al. (2022) and Imfeld et al. (2023). To be able159

to process the time series using our model, we must convert them into matrix form. We160

defined its spatial area as 32×64, which corresponds to a latitude and longitude of 67N161

to 36N and 22E to 41W. Each station position was mapped to the corresponding grid162

cell in which it is located. This resulted in a four-dimensional matrix X ∈ R(365,32,64,2).163

The dimensions represent days, latitude, longitude and weather variables. We scaled the164

values contained therein using the same statistics as for the ERA5 data.165

Several studies (Gousios et al., 2023; Vaughan et al., 2022; Ivek & Vlah, 2023) have166

successfully used geographic information, such as topography, in climatological deep learn-167

ing models. Motivated by these studies, we also investigated the effects of adding ele-168

vation data into our weather reconstructions, namely, the global elevation dataset ETOPO1169

(NOAA National Geophysical Data Center, 2009). To feed elevational data into our model,170

we needed to perform several preprocessing steps. In our target region, the data set spans171
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Station ID Variable Lat Lon

Armagh ARM slp 54.35 -6.65

Barcelona BAR ta 41.39 2.15

Berlin BER both 52.57 13.31

Cadiz CAD ta 36.53 -5.7

Central Belgium CBT ta 50.85 4.35

Central England CET ta 52.5 -1.9

Geneva GVE both 46.2 6.15

Haarlem HAA both 52.38 4.64

Hohenpeissenberg HOH both 47.8 11.02

Karlsruhe KAR slp 49.01 8.4

London LON slp 51.5 0

Milano MIL ta 45.47 9.19

Mulhouse MUL both 47.75 7.34

Padova PAD both 45.41 11.89

Paris PAR both 48.86 2.34

Prag PRA ta 50.07 14.41

Rovereto ROV both 45.9 11.05

Schaffhausen SHA both 47.7 8.64

Stockholm STK both 59.35 18.05

St. Petersburg STP both 59.93 30.27

Torino TOR both 45.07 7.68

Uppsala UPP ta 59.86 17.64

Valencia VAL both 39.48 -0.37

Vilnius VIL ta 54.69 25.28

Warschau WAR ta 52.28 20.96

Wroclaw WRO ta 51.11 17.03

Yilitornio YLI both 66.32 23.67

Zitenice ZIT both 50.56 14.16

Table 1. Stations used for the reconstruction of the year 1807. The abbreviations of the vari-

ables are ta - temperature; slp - pressure; both - if a station recorded the both variables.

Figure 1. The spatial distribution of station locations over Europe. A blue square indicates

pressure, a red circle indicates temperature, and a purple pentagon indicates both variables.

areas between -6374m and 5381m a.s.l. Since the ERA5 data set describes surface vari-172

ables, we assumed that the water depths are not relevant for modeling. Thus, we set all173

values below -100m to -100m. This slightly negative threshold value is intended to make174
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coastal regions smoother and ocean areas distinguishable from land area. We performed175

average-pooling on these adjusted values to achieve a spatial resolution of 1◦×1◦. Fi-176

nally, the values were normalized by min-max scaling.177

3 Methodology178

3.1 Modeling Principle179

The weather reconstruction method proposed in this paper is based on video in-180

painting, a technique to fill spatio-temporal holes with plausible content in a video (Dahun181

et al., 2019). Instead of frames of a video with RGB values in the channel, we model daily182

temperature and pressure fields. Figure 2 illustrates the principle of the video inpaint-183

ing technique for weather reconstruction and the progression of the activation maps through-184

out the network.185

Figure 2. Modeling principle of WeRec3D. The model takes five incomplete and consecutive

days as input consisting of temperature and pressure fields, binary masks and elevation data.

The output is the weather reconstruction of the corresponding days.

The modeling follows a sequence-to-sequence approach. As input we use incom-186

pletely observed consecutive days. The output represents the estimate of the complete187

fields for the corresponding days. Furthermore, a binary mask M is contained in the in-188

put channel, which informs the model which cells to be interpreted as observed or miss-189

ing. Here, 0 and 1 stand for observed and missing, respectively. For image processing,190

the missing pixels in the RGB data affect all channels. When reconstructing weather vari-191

ables, it can be the case that air pressure was observed at a certain location but tem-192

perature was not, or vice versa. There may also be gaps in the time series. Our mask193

must therefore represent the presence of observations per variable and time. We there-194

fore define our mask according to Equation 1. As the masked, i.e. missing cells, anal-195

ogous to pixels, must not contain None values, they are initialized with a default num-196

ber. To do so, we use the mean of the respective weather variable. This substitute value197

is calculated once for the training data and used in the same way for all other data sets.198

The last instance of the input channel represents the elevation model over Europe. Hence,199

WeRec3D receives an incomplete volume X ∈ R(F,H,W,2C+1) and outputs the recon-200

struction Ŷ ∈ R(F,H,W,C). F , H, W , C correspond to days, height, width, and chan-201

nels, respectively. In our case, F = 5, H = 32, W = 64, and C = 2.202
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M ∈ {0, 1}(F,H,W,C) where

{
Mk,i,j,c = 1, if Vk,i,j,c is missing

Mk,i,j,c = 0, otherwise
(1)

Our network is trained in a self-supervised manner. This means that the data ba-203

sis for the model input and the ground truth is the same. As the training and valida-204

tion data originate from a reanalysis, the meteorological fields are complete, i.e. fully ob-205

served. In order to teach the model to estimate missing cells, we need to create artifi-206

cially masked fields from the complete ERA5 meteorological fields. This masking can be207

performed in two ways: either Missing Completely At Random (MCAR) or Not Miss-208

ing At Random (NMAR). In the first case, the missing distribution is uniformly distributed209

across the surface. The second variant results from the actual station locations of the210

inference data from 1807.211

3.2 Model Architecture212

The WeRec3D architecture builds on the CombCN network proposed by Wang et213

al. (2019). In doing so, we retain the U-net-like encoder-decoder convolutional network214

structure. In contrast to the original two-dimensional layers, we use three-dimensional215

layers to seamlessly integrate the temporal dimension into a unified network. The ac-216

tual number of layers and their number of filters as well as batch normalization after each217

layer but the last is retained. The resulting model has 22’957’736 parameters, which cor-218

responds to a size of 90MB. Table 2 documents the details of the layers, with downward219

and upward arrows indicating the halving and doubling of the spatial size, respectively.220

In contrast to CombCN, which used the Rectified Linear Unit (ReLU) activation func-221

tion, our model uses the Exponential Linear Unit (ELU). This choice is due to the cen-222

tered form of our weather data, which allows for negative values unlike the RGB data223

of the original model, which is limited to the range [0, 1]. ReLU sets negative values to224

zero after each layer whereby ELU allows them to be propagated through the network.225

We, thus, assume better performance being achieved in our case by using the later ac-226

tivation function. Only layers 15 and 16 use the tanh activation function. They limit the227

corresponding activation maps to a range of -1 to +1. Finally, the identity function is228

used after the last layer. Using a non-limiting function at the end shall enable the net-229

work to generate potential outliers and thus effectively model extreme events.230

The CombCN network uses dilated convolutions in the latent space of the network to231

enlarge the receptive field of the output units. Thus, the kernel is inflated by artificially232

enlarging the spaces between the filter elements (Yu & Koltun, 2016). Since the latent233

space in our case is several times smaller than in the application of Wang et al. (2019),234

we reduce the dilation rates accordingly.235

During training, our algorithm seeks to minimize the loss function (Equation 4),236

which consists of a linear combination of a masked mean absolute error (MAE) (Equa-237

tion 2) and a normal MAE (Equation 3). Where ⊙ is the pixelwise multiplication, || · · · ||238

is the l1-norm, Y is the ground truth, and BS is the batch size. α controls the compo-239

sition of the linear combination and is set to 0.5. In this way, WeRec3D is taught to gen-240

erate the entire meteorological field with a stronger focus on the masked cells. This is241

because in Equation 2, the errors in the reconstruction of the originally observed cells242

are multiplied by zero and therefore not taken into account.243

3.3 Physical Soft Constraint by means of Covariance Matrix Inclusion244

Off-the-shelf deep neural networks do not necessarily obey the fundamental laws245

of physical systems (Kashinath et al., 2021). As a result, model outputs can potentially246

become physically impossible. However, it is vital to ensure such plausibility, especially247

when making predictions for situations for which the model has not been explicitly trained.248

Regularization techniques are used in machine learning to prevent overfitting, for exam-249
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Layer No. Type Kernel Stride Filters Dilation Padding Activation
1 conv. (3, 5, 5) (1, 1, 1) 64 - same ELU
2 conv. ↓ (3, 4, 4) (1, 2, 2) 128 - valid ELU
3 conv. (3, 3, 3) (1, 1, 1) 128 - same ELU
4 conv. ↓ (3, 3, 3) (1, 2, 2) 256 - valid ELU
5 conv. (3, 3, 3) (1, 1, 1) 256 - same ELU
6 conv. (3, 3, 3) (1, 1, 1) 256 - same ELU
7 dilated conv. (3, 3, 3) (1, 1, 1) 256 (1, 2, 2) same ELU
8 dilated conv. (3, 3, 3) (1, 1, 1) 256 (1, 2, 2) same ELU
9 dilated conv. (3, 3, 3) (1, 1, 1) 256 (1, 3, 3) same ELU
10 dilated conv. (3, 3, 3) (1, 1, 1) 256 (1, 4, 4) same ELU
11 conv. (3, 3, 3) (1, 1, 1) 256 - same ELU
12 conv. (3, 3, 3) (1, 1, 1) 256 - same ELU
13 deconv. ↑ (1, 3, 3) (1, 2, 2) 128 - valid ELU
14 conv. (3, 3, 3) (1, 1, 1) 128 - same ELU
15 deconv. ↑ (1, 3, 3) (1, 2, 2) 64 - valid tanh
16 conv. (3, 3, 3) (1, 1, 1) 32 - same tanh
17 conv. (3, 3, 3) (1, 1, 1) 2 - same linear

Table 2. Network architecture of the WeRec3D model. In the type column, ↓ and ↑ indicate

the halving and doubling of the spatial size, respectively.

MMAE(Y, Ŷ ,M) =
1

BS

1

F

BS∑
b=1

F∑
k=1

||Mk
b ⊙ (Y k

b − Ŷ k
b )||

||Mk
b ||

(2)

MAE(Y, Ŷ ) =
||Y − Ŷ ||

BS · F ·H ·W · CH
(3)

L(Y, Ŷ ,M) = α ·MMAE+ (1− α) ·MAE (4)

ple, by extending the optimization function. Similarly, physical information can be in-250

corporated by enhancing the loss function with prior knowledge. For instance, additional251

terms can be included that describe physical relationships in the mappings. This trans-252

forms the optimization space and can promote the convergence of the training process253

to more plausible solutions (Jia et al., 2021). Such regularization only provides some guid-254

ance towards a physically sound optimum, but does not enforce it and is thus also re-255

ferred to as a soft constraint (Kashinath et al., 2021).256

In weather reconstruction, field pattern analysis provides information about the relation-257

ship between different variables and areas in space and time. For this purpose, climate258

researchers use a principal component analysis, which is derived from the covariance ma-259

trix of the meteorological fields (Luterbacher et al., 2002; Casty, Handorf, et al., 2005).260

The covariance matrix describes the relationship between each grid cell and every other261

position in the area under consideration. For example, Iceland and the Azores have an262

inverse relationship with regard to air pressure (Stephenson et al., 2003). If the pressure263

rises over Iceland, it falls over the Azores and vice versa. Such correlations can also be264

seen for the temperature and intravariable in the covariance matrix.265

Our application should be able to correctly reproduce such relationships in the recon-266

struction. Therefore, we develop a physical soft constraint that informs the model of po-267

tentially misaligned correlations between the predictions cells. The soft constraint is im-268

plemented via an extension of the loss function according to Equation 5. Specifically, it269

is the MAE of two covariance matrices, i.e. ℓ(σ2
y, σ

2
ŷ) = 1

n

∑n
i=0 |σ2

yi
− σ2

ŷi
|. With σ2

ŷ270

being calculated on the prediction of the model, σ2
y on the corresponding ground truth.271

The process of creating a covariance matrix is the same for both and is visualized in Fig-272

ure 3. In the course of each training iteration, WeRec3D processes a batch of random273

samples. Each sample contains five consecutive days, i.e. frames in the form of temper-274

ature and air pressure fields. First, we flatten the meteorological fields and concatenate275

their variables, creating a one-dimensional row vector for each day. The vectors are then276

stacked to obtain a 2D matrix of the form days × cells. We then calculate the covari-277
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ance matrix of this using the equation shown on the right of the figure. The formula is278

chosen in matrix form to enable a high-performance implementation. Comprising con-279

tinuous algebraic operations, it is inherently differentiable, which is a key ingredient for280

backpropagation.281

The constraint is added to the objective function through a linear combination controlled282

by a hyperparameter β. We set this to 0.9 so that the proportion of the physical soft con-283

straint is 10%. In this way, the constraint slightly guides the learning process while the284

original loss part remains decisive.285

L(Y, Ŷ ,M) = β · (α ·MMAE+ (1− α) ·MAE) + (1− β) · ℓ(σ2
y, σ

2
ŷ) (5)

Figure 3. Covariance Matrix Creation. Temperature and pressure are represented by the

colors red and blue, respectively. In the matrix on the right, these colors correspond to their

respective covariance values. The purple squares indicate the covariance values between tempera-

ture and pressure.

3.4 Training Details286

The performance of inpainting tasks decreases with increasing missing rate. There-287

fore, we expect that our model will have severe difficulties in learning and reconstruct-288

ing weather phenomena based only on 1% observed cells. To overcome this obstacle, we289

apply a training method, which we call incremental pre-training. Its aim is to gradually290

familiarize the model with the actual reconstruction task by training it successively on291

10%, 20%, ..., 90% and 99% missing rates. At each level, we use 10 epochs. Instead of292

reinitializing the parameters of our network for the next percentage level, we use the weights293

of the previous trained model. In other words, each reconstruction can benefit from what294

has already been learned and build on it. In particular, the use of the normal MAE loss295

component should contribute significantly to this, because it enables WeRec3D to learn296

from the non-masked cells as well. We assume that relevant weather features will be learned297

at low percentage levels and that this knowledge will be transferred up to the 99% rate.298

However, this approach also poses a risk. Processing the same examples multiple times299

could lead to the memorization of the training samples. To minimize overfitting, we only300

pass the weights resulting from early stopping to the next initialization. That is, from301

the epoch that results in the lowest validation error.302

Generally, the more data a deep learning algorithm receives for training, the better it303

performs. In the field of computer vision, the amount of training data is often artificially304

increased by data augmentation. Data augmentation creates new samples from exist-305

ing images or frames by cropping, rotating, distorting, or shading them with a color tone306

(Shorten & Khoshgoftaar, 2019). These manipulations also increase the variability of the307
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data, which reduces overfitting of models. The way in which the examples can be changed308

depends always on the nature of the problem. In other words, the results of the manip-309

ulation must still make sense in the context of modeling. For our use case, this means310

that external influences on European weather, such as jet streams, must remain valid.311

We therefore consider augmentations such as rotation or mirroring to be impractical. How-312

ever, changing the spatial position seems sensible. The blue rectangle in Figure 4 shows313

the base window of size 32x64. Our data augmentation approach now consists of mov-314

ing this window in order to generate slightly different samples. Specifically, during train-315

ing, each batch of samples is randomly manipulated twice. Thereby, the window size re-316

mains the same, but the position comes to lie in the expanded region (33N to 73N and317

24W to 44E). The potential shifts are illustrated by the red rectangles. For the valida-318

tion of the reconstruction, we only use the base window.319

WeRec3D uses Glorot initialization (Glorot & Bengio, 2010) for weights, minimizes the320

loss function with the default parameterised Adam optimization (Kingma & Ba, 2017)321

during training, and processes data in batches of 16 samples.322

Figure 4. Illustration of Moving Window Sampling. The default or base window is indicated

by the blue rectangle, possible shifted areas are indicated by the two red rectangles.

3.5 Creating WeRec3D: Building the Leading Method through Itera-323

tive Enhancements324

WeRec3D leverages various strategies to enable an accurate reconstruction capa-325

bility when rates of missing data are high. In this section, we outline the iterative eval-326

uation process that led to our final methodology. Specifically, this involves six enhance-327

ment techniques that were included or omitted in the training process. (i) Use of cli-328

matology (Clim.) instead of the anomaly used in classical weather analysis. (ii) In-329

cremental pretraining (IPT) instead of directly modeling a missing rate of 99%. (iii)330

Spatially moving window (MovWin): During training, we feed the network with331

meteorological fields that are sampled at different spatial locations rather than just at332

a fixed position. (iv) Soft constraint on the loss function (SC): A physical restric-333

tion that steers the learning process towards a more plausible local optimum. (v) El-334

evation data (Elev.) as a further predictor. (vi) Physically-informed initializa-335

tion (PII): This technique is borrowed from Yao et al. (2023) and aims to start the in-336

painting process with a relatively reliable and physically plausible basis in the missing337

areas. Instead of using the same initial value for all masked cells, each cell is individu-338

ally initialized with the corresponding average value over time.339

It is impossible to predict in advance whether the strategies introduced and their com-340

binations will positively or negatively affect the quality of the reconstruction. Analyz-341

ing all possible combinations would yield 64 method variants, as 26 = 64. Therefore,342

our objective is to streamline the search for the most effective combination. To achieve343

this, we apply an iterative heuristic to efficiently find a leading method in its local neigh-344
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borhood. Thereby, we imagine the combination of techniques as a tree. The root node345

is the baseline model, followed by all six strategies on the first level. Each node is suc-346

ceeded by the techniques that were not previously encountered on the path leading to347

the node. Our iterative discovery procedure proceeds as shown in the enumeration be-348

low. Depending on the improvement of an additional extension, the tree is traversed in349

a depth-first-search or a breadth-first-search manner.350

1. We start by naming the base model, which serves as the first reference point, the351

leading method. We then move on to the first level of the tree.352

2. Select a node at the current tree level that has not yet been visited.353

(a) We analyze the resulting accuracy and compare it to that of the leading method.354

(b) If the performance is significantly better, this approach becomes the new lead-355

ing method. We then traverse the tree one level further and start again at Step356

2.357

(c) If the quality is not significantly better, we visit the next unvisited node at the358

current level and repeat Step 2.a).359

(d) If no significantly better performance could be achieved, we choose the tech-360

nique that most reduced the error. This is now considered the leading method.361

We go down one level along the corresponding node and move back to Step 2.362

(e) If no technique was able to reduce the error, the search is complete. The same363

applies if we have reached a leaf node.364

3. After completion of the search, the combination marked as leading method is our365

choice for the best modeling, that is, WeRec3D.366

We set the significance level to 90%. Consequently, a newly added technique must367

reduce the error compared to the last leading method to at least 90% to be considered368

a significant improvement. In addition, we set the random seed to the same value for each369

experiment to make them comparable to each other. Thus, the weights are initialized370

in the same way each time, and the shuffle of the samples results in the same order for371

each trial. In addition, the same masking, i.e. the artificial deletion of cells, is used in372

every experiment. The cells to be interpreted as observed or missing are based on a ran-373

dom uniform distribution over the field.374

Section 4.1 shows the results of this evaluation. The best validation metrics were achieved375

by combining the techniques i to v.376

3.6 Accounting for the Station Distribution in 1807377

Different historical periods may exhibit a different spatial distribution of the weather378

stations at that time. For the inference of the year 1807, this corresponds to the posi-379

tions in Figure 1. Consequently, all fields have the same observed cell positions, apart380

from the few gaps in the temporal dimension. Every cell in which there is no station is381

to be regarded as missing. We refer to such masking as Not Missing At Random(NMAR).382

For the evaluation described in Section 3.5, however, we used a Missing Completely At383

Random (MCAR) distribution of the observations. This means that the positions of the384

missing cells are set randomly in the spatial dimension. Thus, in contrast to NMAR, all385

fields have different observation positions. We use MCAR masks to assess the techniques386

independently of a specific historical event and its weather station positions.387

However, we assume that a reconstruction based on an NMAR input is more difficult388

than on MCAR observations, because the variability of the information available to the389

model is reduced. To evaluate this assumption, we analyzed how the resulted leading method390

performs when given NMAR-masked validation data as input. Next, we compared the391

corresponding accuracy with two approaches that specifically adjust the model to the392

NMAR distribution: NMAR training and NMAR fine-tuning. This comparison was still393
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made based on the validation set. Only the best-performing strategy will be further ex-394

amined based on the test set in Section 4.3 to provide an estimate for inference.395

With NMAR training, we incrementally train at several percentage levels in the sense396

of incremental pre-training. However, the observations are now statically defined as the397

same for all samples per variable. Figure 5 illustrates the corresponding masks of the tem-398

perature variable. The white cells indicate masked areas, and the black pixels represent399

the locations treated as observed. Thereby, the observed region decreases spherically in400

the direction of the station positions as the missing rate increases. The 99% level thus401

corresponds to the observation locations of the target year 1807.402

For the second approach, NMAR fine-tuning, the model is not taught from scratch. In-403

stead, we fine-tune the leading model which was trained on a MCAR distribution to fo-404

cus specifically on the observation positions of 1807.405

Figure 5. Masks used for NMAR training. White and black represent the missing and ob-

served areas, respectively. The region of observed cells decreases spherically towards the station

positions of 1807.

3.7 Artificially Increasing the Proportion of Observations Through ARM406

Enhancement407

Our analyzes showed that the validation error increases exponentially between 90%408

and 99% missing rates. Therefore, the reconstruction accuracy for the year 1807 could409

presumably be significantly improved if a small number of additional observations were410

available. However, the retrieval of further historical weather logbooks is very time-consuming.411

For this reason, we are investigating whether the reconstruction quality can be improved412

by artificially increasing the proportion of observations. By an artificial increase we mean413

the input of additional cell values that are plausible in relation to the respective field per414

day. Specifically, we borrow these values from the Analogue Resampling Method (ARM)415

(Lorenz, 1969).416

ARM is a common and successful statistical model used for weather reconstruction (Brönnimann,417

2022a; Pappert et al., 2022; Pfister et al., 2020; Imfeld et al., 2023). The model assumes418

atmospheric state patterns will repeat themselves over time. If one state is similar to an-419

other, the resulting local weather effects are presumably similar (Lorenz, 1969). The idea420

of ARM-based weather reconstruction is in principle comparable to the kNN algorithm421

with k = 1. One takes a historical day whose field was not completely observed, i.e. a422

day whose missing field cells one wants to reconstruct. From a pool of fully observed fields,423

the ARM selects the day that best matches the observation locations of the historical424

day. Based on the above assumption, the two days have similar local weather effects. The425

selected day is called the best analogue. It represents the reconstruction of the weather426

in the unobserved areas in the past (Brönnimann, 2022a).427

For each incomplete day in 1807, we searched for a similar complete field from the ERA5428

training dataset. We then randomly replaced 3% of the unobserved cells of each histor-429

ical field with the cell values of the respective best analogue and treated them as observed.430
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This artificially decreases the missing rate of the inference data from 99% to 96%, re-431

sulting in observations that approximate a MCAR distribution. In accordance with this432

distribution, we refined the training process of WeRec3D to reconstruct the year 1807433

with this enhanced input. We have again trained the model on several MCAR percent-434

age levels, but replaced the final 99% mask with a 96% mask. The corresponding results435

are shown in Section 4.4.436

4 Results and Discussion437

4.1 Evaluation of the Creation of WeRec3D.438

In this section, we analyse the iterative creation of WeRec3D. Table 3 shows the439

experiments performed and their performance on the validation data at 99% MCAR. For440

better comparability, we calculate all validation metrics based on the anomalies of the441

prediction and the ground truth. The order from top to bottom corresponds to the dis-442

covery procedure described in Section 3.5. The six columns on the right-hand side show443

which extensions were included in the experiment. In addition to the specific validation444

MAE value, we indicate whether the experiment led to a leading method (LM) and to445

which degree the error has decreased (Err. Dec.) compared to the previous LM.446

Our finding procedure starts with evaluating the baseline (1). This means only train-447

ing the convolutional network on anomalies and without additional extensions. The first448

evaluated strategy, the preservation of climatology (2), was already able to significantly449

reduce the validation error to 77%. Therefore, we kept this approach directly and inves-450

tigated incremental pre-training (3) based on it. This further reduced the error of the451

current leading method to 67%. The next four experiments (3.1 to 3.4) operate at the452

same tree level. At this point, no technique was able to significantly improve the qual-453

ity. Only the addition of elevation data as a further predictor has a minimal positive ef-454

fect. For this reason, the corresponding node becomes the new leading method. Three455

extensions remain, which are validated in experiments 4.1 to 4.3. The spatially moving456

window method is the only one that slightly reduces the error. After its contribution,457

two potential approaches remain (5.1 and 5.2). At this level, the physical soft constraint458

(5.1) wins the race, although not significantly. After that, the physically informed ini-459

tialization (6.1) fails in providing better performance.460

A noticeable finding in this analysis is the synergy between Elev, MovWin and SC. Ini-461

tially, neither MovWin nor SC was able to reduce the error. Only when combined with462

the additional elevation data did the moving window technique lead to a reduction in463

the validation MAE. We assume that without the topography, the model has difficul-464

ties distinguishing between the differently sampled window positions. These difficulties465

seem to outweigh the added value of data augmentation through MovWin. However, as466

soon as the orientation of the model is supported by the topological input, the recon-467

struction quality improves. The situation is similar with the physical soft constraint (SC ).468

This improvement technique only has a positive influence when it is combined with MovWin.469

The soft constraint is based on the covariance matrix, which is calculated using the fed470

fields. If the position of the fields remains the same and there are enough samples (in471

our case N = 80), the covariance matrix should always appear fairly consistent. In this472

case, the model can only gain limited information from it. The MovWin technique changes473

the field position for each batch. As a result, the information content about the mete-474

orological correlations also increases, which argumentatively leads to an increase in ac-475

curacy.476

The heuristically best combination (marked with *) was able to reduce the error477

compared to the baseline to 48%. Scaled back to the actual units, this results in a MAE478

of 0.85 °C and 122 Pa for temperature and pressure respectively. The spatial and tem-479

poral distribution of the MCAR validation error can be seen in Figures 6 and 7. Our model480

exhibits the most pronounced challenges in accurately reconstructing temperatures within481

the regions of Iceland and Norway. In these areas, the average error is greater than 2 °C.482
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Experiment Val MAE LM Err. Dec. Clim. IPT MovWin SC Elev. PII

1: Baseline 0.2144 ✓ -

2: Clim. 0.1654 ✓ 77% ✓

3: IPT 0.11064 ✓ 67% ✓ ✓

3.1: MovWin 0.1244 - - ✓ ✓ ✓

3.2: SC 0.1138 - - ✓ ✓ ✓

3.3: Elev. 0.1106 ✓ 99.96% ✓ ✓ ✓

3.4: PII 0.1131 - - ✓ ✓ ✓

4.1: MovWin 0.1064 ✓ 96% ✓ ✓ ✓ ✓

4.2: SC 0.1133 - - ✓ ✓ ✓ ✓

4.3: PII 0.1142 - - ✓ ✓ ✓ ✓

5.1: SC (*) 0.1032 ✓ 97% ✓ ✓ ✓ ✓ ✓

5.2: PII 0.1084 - - ✓ ✓ ✓ ✓ ✓

6.1: PII 0.1093 - - ✓ ✓ ✓ ✓ ✓ ✓

Table 3. Validation errors of differently combined enhancement techniques, with * marking

the lowest error. In the LM column, a ✓indicates whether a technique led to a leading method.

Err. Dec. shows the amount by which the error was reduced compared to the previous leading

method. A ✓in the remaining cells indicates the investigated techniques in each experiment (see

Section 3.5 for abbreviations).

In Central Europe, the temperature error is around 1°C; over the sea it is even less than483

0.5 °C. The situation is different for pressure. Here, only the areas at the edge of our win-484

dow cause difficulties; a phenomenon that is typical for CNN-based models. The spa-485

tially summarized errors show a clear seasonality in both variables. The winter months486

appear to be reconstructed with less accuracy and higher variability than the summer487

months. Particularly noteworthy is the outlier of the temperature error in February, which488

is almost 3 °C. According to Portenier et al. (2017), Western Europe was hit by a severe489

cold wave in February 1956, which led to exceptionally low temperatures in the region.490

Our model has great difficulty in accurately reconstructing the conditions at that time.491

In fact, the five highest temperature errors on the validation set occur between 1956.01.30492

and 1956.02.05 with µ = 2.05 °C and σ = 0.34 °C.493

4.2 Evaluation based on NMAR Distributed Observations494

In this section, we investigate how the leading method performs on NMAR input495

and compare it to the alternative strategies NMAR training and NMAR fine-tuning. Ta-496

ble 4 presents the validation metrics for the leading method using MCAR and NMAR497

input, as well as for the alternative strategies using NMAR input. The performance of498

the leading method approximately halves on NMAR input compared to MCAR input.499

The alternative training strategies, which are designed for the specific station distribu-500

tion of 1807, show significantly improved performance under NMAR conditions. The two501

outcomes are nearly indistinguishable, both showing practically the same normalized MAE502

values. Only when the metrics are scaled proportionally to the share of each variable do503

subtle differences emerge. Given that we place greater importance on improvements in504

the temperature variable compared to the pressure variable, we have opted for NMAR505

training as our training strategy for subsequent inference tasks. However, this approach506

still has a significantly higher error than if the input were MCAR. This is justified by507

the fact that with NMAR, the model must extrapolate into regions where it has no prior508

knowledge, whereas with MCAR, it predominantly interpolates between observed data509

–14–



manuscript submitted to JGR: Machine Learning and Computation

Figure 6. Spatial error of temperature and pressure over time during 1955 to 1964 for valida-

tion and during 1950 to 1954 for test. The top row results from MCAR validation data modeled

by the leading method, the middle row from NMAR validation data modeled by the NMAR

trained model, and the bottom row from the test data modeled by the NMAR trained model.

points. Figures 6 and 7 (middle row) display the spatial and temporal validation error510

resulting from the NMAR training strategy. The NMAR distribution of the observations511

has a strong effect on spatial quality. In Central Europe, the area with a high density512

of observations, errors tend to be low. However, for both temperature and pressure, er-513

rors increase with distance from the areas with a high spatial coverage of observations.514

The error over time exhibits seasonality with larger errors in the winter months compared515

to the summer months.516

Strategy Input distribution Val MAE ta [°C] slp [Pa]

Leading Method MCAR 0.103 0.85 122

Leading Method NMAR 0.238 1.8 301

NMAR Fine-tuning NMAR 0.154 1.15 196

NMAR training NMAR 0.153 1.11 199

Table 4. Validation errors on Completely-Missing-At-Random and Not-Missing-At-Random

inputs with 99% missing rate.
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Figure 7. Temporal error of temperature and pressure over time during 1955 to 1964 for

validation and during 1950 to 1954 for test. The top row results from MCAR validation data

modeled by the leading method, the middle row from NMAR validation data modeled by the

NMAR trained model, and the bottom row from the test data modeled by the NMAR trained

model.

4.3 Evaluation based on the Test Set517

We have now arrived at an appropriate methodology for inference, i.e. the recon-518

struction of the weather in 1807, by training WeRec3D from scratch using NMAR masks519

as shown in Figure 5. Up to this point, all evaluations of our approaches have been based520

on the validation data set. Thus, one can expect that the chosen method exhibits an ar-521

tificial skill to a certain extent. To more accurately assess the quality of the model, we522

are conducting a weather reconstruction on the test set (1950 to 1954) in this section.523

The test set anomaly MAE amounts to 0.156 (1.15 °C and 201 Pa) given a NMAR in-524

put with 99% missing cells. This error represents a mere 2% increase compared to the525

validation data, suggesting a robust generalization capability of our methodology. Fig-526

ures 6 and 7 (lowest row) display its spatially and temporally distributed errors, which527

strongly resemble the errors of the NMAR validation data (middle row).528

4.4 Evaluation of the Reconstruction over Europe in 1807529

In this section, we perform the actual reconstruction of the historical weather mea-530

surement of 1807. In contrast to the previously used reanalysis data, we do not have com-531

plete ground-truth fields available for validation. Since we only have 43 time series of532

the measuring stations for the year 1807, we cannot do a full spatial assessment. Instead,533

we carry out a leave-one-out (LOO) procedure over space by running 43 reconstructions534

and for each run leaving out one time series. The thereby generated predictions of the535

corresponding cell are then compared with the omitted observation. Some processing steps536
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are required to perform the LOO cross-validation. First, the seasonality in the temper-537

ature data has to be removed since otherwise, the correlation is influenced by the an-538

nual cycle of temperature. Therefore, we fit the first two harmonics using linear regres-539

sion as it has been done by Pfister et al. (2020). This results in a sine-like function that540

is subtracted from the corresponding temperature data. For pressure data, we validate541

on its daily anomaly, calculated with respect to the deviation from the long-term aver-542

age of each day of the year. To display all measurements in the same plot, they are nor-543

malized by dividing the RMSE and the two standard deviations by the standard devi-544

ation of the corresponding observation. All observations have, therefore, the same ref-545

erence point and show uniform metrics for their prediction.546

In the following, we begin with the evaluation of the weather reconstruction using the547

WeRec3D model trained on NMAR masks. Then we show the performance of the recon-548

struction whose input was enhanced with ARM cells as described in Section 3.7.549

Figure 8 (top) shows the quantitative metrics resulting from the LOO procedure550

for the 43 time series in a Taylor plot (Taylor, 2001). About half of the values are closely551

centered around the optimal reference point, indicating a high accuracy of the reconstruc-552

tion. Each time series was reconstructed with at least a correlation of 0.91 and a max-553

imum normalized RMSE and standard deviation delta of 0.58 and 0.51 respectively. The554

best (St. Petersburg) and worst (Central Belgium) reconstructed temperature time se-555

ries are shown in Figure 9. This comparison is intended to illustrate the range of qual-556

ity of the remaining reconstructions. St. Petersburg has the lowest and the Central Bel-557

gium time series the highest normalized RMSE value among the anomaly temperatures.558

In the Taylor plot, the Belgian station corresponds to the blue marker at the top right.559

The most accurate prediction is almost congruent with the target series. Similar qual-560

ities can therefore be expected for markings close to the reference point. The worst pre-561

diction (Central Belgium) tends to have a negative bias in winter and a positive bias in562

summer. Depending on the day, the absolute error can be greater than 5 °C. However,563

the normalized correlation with the historical observation is still over 0.95, which can be564

clearly seen in the graph. This is because even if the prediction often overshoots the tar-565

get, the deflection of the curve heads nevertheless generally in the right direction.566

The results produced using ARM enhanced input differ from the variant without567

it in a subtle but potential important characteristic. As can be seen in Figure 8 (bot-568

tom), there is now a small gap between the reference point and the best reconstruction.569

This means an increase in the normalized RMSE and a very slight degradation of the570

correlation for the best reconstructions. However, it can be clearly seen that the normal-571

ized standard deviations of the predictions are now less broadly distributed and are in-572

creasingly on the left side (σ < 1). The variance of these predictions, thus, tends to be573

lower than that of the prediction without ARM enhancement and also lower compared574

to the corresponding reference series. The reconstructed stations show a correlation of575

at least 0.84 and a maximum normalized RMSE and standard deviation delta of 0.54576

and 0.27 respectively.577

5 Conclusion578

In this paper, we set out to investigate the potential of artificial intelligence for weather579

reconstruction. As a result, we propose a tailor-made network architecture, called WeRec3D,580

which has been optimized by innovative extensions of the modeling process to the ex-581

trapolation of daily pressure and temperature fields. The resulting method allows the582

reconstruction of historical weather observations describing only one percent of the area583

in Europe on a 1°×1° resolution grid, i.e. a gap filling of data with 99% missing rate. Fur-584

thermore, the modular design of our solution allows the inclusion of additional weather585

variables as well as the use of different resolutions of the space-time volume. This makes586

it suitable for reconstructing arbitrary historical events.587
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Figure 8. Leave-one-out validations in space of 1807 using WeRec3D trained on NMAR

masks (top) and using ARM enhanced input (bottom).

Figure 9. The temperature reconstructions of 1807 yielding the best (top) and worst (bot-

tom) RMSE score. The ground truth and reconstruction are shown in blue and red, respectively.
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The basic building block of our method is a neural network consisting of three-dimensional588

convolutional layers. These enable the simultaneous modeling of space and time. The589

adopted modeling extensions in combination reduce the reconstruction error of WeRec3D590

by factor two. In contrast to classical weather analysis, our method works best on pure591

climatology and not on its anomaly. The use of a moving-window method to sample the592

weather fields leads to an increased variability of the inputs and thus to an amplified gen-593

eralization capability. Elevation data - as a further predictor - of the corresponding ar-594

eas support the orientation. To guide the learning process to a physically plausible lo-595

cal optimum, we apply a soft constraint to the loss function. This is derived from the596

covariance matrix of the meteorological fields, which describes the intervariable relation-597

ships between temperature and pressure. Through incremental pre-training on succes-598

sively increasing error rates, the model learns weather patterns. The acquired knowledge599

can then be reproduced even if the input is 99600

The type of distribution of the observation positions has a decisive influence on the qual-601

ity of the reconstruction, meaning that the accuracy of randomly distributed measure-602

ments is approximately twice as high as if they are distributed at fixed positions. How-603

ever, the performance of weather modeling can be considerably improved if the algorithm604

is specifically trained on the positions of the expected observations. Alternatively, the605

artificial reduction of the missing rate using the analogue resampling method offers a promis-606

ing solution. To verify the effectiveness of our reconstruction model, validation was per-607

formed on both recent and historical data. The analysis of the year 1807 shows a strong608

correlation and marginal RMSE values during the LOO validation in space across the609

weather stations.610

Future work will explore the application of WeRec3D to other regions and periods, the611

improvement of its interpretability and the incorporation of further predictors.612

Open Research Section613

The code and data required to replicate the results discussed in this paper are avail-614

able on GitHub and have been archived with a DOI. You can find the code at https://615

github.com/YannisSchmutz/WeRec3D/tree/v1.0.0 (Schmutz, 2024).616
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