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Key Points:

e This paper proposes a novel deep-learning based video-inpainting method for the
reconstruction of daily historical weather fields.

e The implementation of domain-specific modeling improvement techniques halves
the validation error.

e Our model reconstructs the heat wave of 1807 in Europe with a high degree of ac-
curacy despite 99% missing cells.
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Abstract

We investigate the applicability of deep learning methods for reconstructing daily weather
data. Inspired by video inpainting, we propose a novel method, WeRec3D, which uti-
lizes a three-dimensional convolutional neural network. Our approach was developed it-
eratively by evaluating six modeling improvement techniques. The resulting method re-
duces the validation error to 48% compared to the baseline. Additionally, we demonstrate
the impact of the spatial distribution of observations on reconstruction accuracy and pro-
pose a potential integration with the analogue resampling method. WeRec3D is trained
and validated in a self-supervised manner using ERA5’s surface temperature and pres-
sure data over Europe. On a hold-out set from 1950 to 1954, the validation results in

an MAE of 1.11 °C and 199 Pa. As a case study, we reconstruct the 1807 heat wave and
validate it using a leave-one-out method in space. Compared to the original data, the
reconstructed time series exhibit a correlation of at least 0.91, with a maximum normal-
ized RMSE and standard deviation delta of 0.58 and 0.51 respectively. To the best of

our knowledge, this is the first study to investigate weather reconstruction using deep
learning algorithms, proposing video inpainting as a novel approach for reconstructing
missing weather information.

Plain Language Summary

We explore how deep learning can help reconstruct daily weather data. Inspired
by techniques used to fill in missing parts of videos, we introduce a new method called
WeRec3D, which uses a type of deep learning model that processes data in three dimen-
sions. We improved our approach by evaluating six different techniques, resulting in a
combination that is twice as accurate than our initial attempt. We further show how the
location of weather observations affects the accuracy of our reconstructions and suggest
a potential combination of our method with another technique from the realm of weather
reconstruction. WeRec3D is trained and tested using surface temperature and pressure
data over Europe. Our model achieves an average error of 1.11 °C for temperature and
199 Pa for pressure tested on the period during 1950 to 1954. As an example, we recon-
struct the 1807 heat wave and validate it using a specific method that leaves out one area
at a time. The results show a strong correlation with actual data and low error rates.
This study is the first to use deep learning for weather reconstruction, proposing a new
way to fill in missing weather data utilizing video inpainting.

1 Introduction

The recent surge in artificial intelligence (AI) has greatly intensified interest in the
use of Al technologies for meteorological applications (Schultz et al., 2021). Machine learn-
ing (ML) approaches are increasingly being used to extract patterns and insights from
the ever-growing stream of geodata (Reichstein et al., 2019). In this paper, we investi-
gate the applicability of deep learning (DL) methods specifically for the task of weather
reconstruction.

Extreme weather events have always occurred in the past. Researchers recorded and doc-
umented instrumental meteorological observations in analogue logbooks as early as the
17th century (Bronnimann et al., 2019; Camuffo et al., 2023). Such data is extremely
valuable for climate research. Historical instrumental records of past extremes can im-
prove our understanding of climate variability and its mechanisms. For this reason, many
such logbooks have been collected, digitized, and processed in recent decades (Brugnara
et al., 2020; Pfister et al., 2019). However, past meteorological observations only have
limited spatial validity. In other words, they only describe the local weather in the area
of the respective measuring station. This is, however, not enough to gain a better un-
derstanding of climate and to be able to run impact models which require spatially and
temporally complete meteorological fields (Fliickiger et al., 2017; Rossler & Bronnimann,
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2018). Such detailed representations can be created from historical observations by means
of weather reconstruction.

In this study, we consider weather reconstruction as the process of extending daily grid-
ded fields of variables such as temperature or pressure backward in time. Various stud-

ies have already performed daily weather reconstructions for Europe based on the ana-
logue resampling method, with data dating back to the 18th century (Pappert et al., 2022;
Pfister et al., 2020; Imfeld et al., 2023).

Recently, methods from the field of deep learning have found their way into climate sci-
ence (Gong et al., 2022; Schultz et al., 2021). For example, Kadow et al. (2020) and Yao
et al. (2023) used image inpainting approaches from the realm of computer vision to re-
construct monthly climate data. Compared to monthly averages, daily observations show
stronger temporal dependencies. Therefore, these cannot be modeled using an image in-
painting method. Rather, in this paper we investigate the applicability of video inpaint-
ing as a new method for weather reconstruction. Video inpainting functions in a sim-

ilar way to classic inpainting but operates simultaneously on several successive frames

of a data stream instead of just one image at the time. Due to this additional tempo-

ral dimension, this method shares common characteristics with weather reconstruction.
Both attempt to explore the spatial-temporal relationships between existing and miss-

ing data.

One of the main limitations of inpainting is that the general performance decreases as

the percentage of missing parts increases (Sun et al., 2022). For historical weather re-
construction, one deals with missing rates of +99%, considering a spatial grid over Eu-
rope with a resolution of 1° x 1°. Thus, this is not expected to be handled accurately

by an unmodified video inpainting approach. To address this challenge, we propose a novel
deep learning-based weather reconstruction method, WeRec3D, based on a three-dimensional
convolutional neural network. In contrast to traditional meteorological techniques that
operate on anomalies (Qian et al., 2021), our method processes the climatology. It lever-
ages an incremental pre-training approach to gradually tackle high missing rates. The

use of spatially moving window sampling increases the number and variability of train-
ing examples, and thus amplifies the generalization capability. Elevation data - as a fur-
ther predictor - of the corresponding areas support the orientation. To guide the learn-
ing process to a physically plausible local optimum, we apply a soft constraint to the loss
function.

Within our experiments, we operate on 2-meter temperature and sea level pressure data
from two periods. On the one hand, reanalysis data from the recent past (1950 to 2020)
are used to train and initially validate our algorithm. These fully observed variables are
artificially masked and fed to the model to learn the conditions on which the weather

is based. On the other hand, we use historical weather records from the year 1807. These
spatially and temporally incomplete data are reconstructed by the trained model to demon-
strate its performance. The historic summer of 1807 was exceptionally warm in Europe

at that time. With an anomaly of +2.15°C, it was the warmest Alpine summer between
1500 and 1900 in the reconstruction by Casty, Wanner, et al. (2005). Due to the unusu-
ally high temperatures, this summer represents an interesting period for climate and weather
research.

To the best of our knowledge, this is the first study to investigate weather reconstruc-
tion using deep learning algorithms.

2 Data

As data basis for training, we used 2-meter temperature (ta) and mean sea level
pressure (slp) from the ERA5 data set (Hersbach et al., 2020). ERAS5 is a global reanal-
ysis with an hourly temporal resolution and a spatial resolution of 0.25° x 0.25°. We
limited our analysis to an area of 33N to 73N and 24W to 44E and a time span from 1950
to 2020. However, the data within this period show a different statistical distribution
than is the case for the inference year 1807. This manifests itself in a temperature trend
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within the modern time span. Furthermore, present-day ERA5 temperatures are gen-
erally warmer than temperature observations in the early 19th century (Pappert et al.,
2022; Imfeld et al., 2023). For this reason, we performed domain-specific preprocessing
applied in other weather reconstruction attempts to align these data with the statisti-

cal distribution of the inference variables.

Firstly, the temporal resolution of the hourly reanalysis data was adjusted to daily mean
values. Further, we reduced the spatial resolution to 1°x1° by average pooling. In do-
ing so, neighbouring cells within a square are combined and replaced by a cell that cor-
responds to their average. This reduces the size of the matrix to be processed by a fac-
tor of 16, making computation significantly less expensive. We then ensured that the tem-
perature data did not contain any trends in the same way as done by Imfeld et al. (2023).
To do so, we calculated the zonal averages considering only land areas from the ERA5
temperature data. For each latitude, the average of the longitudes was calculated to ob-
tain zonal averages. A linear regression model was then fitted over time to the land-only
zonal mean temperature values, resulting in a slope. This slope was subtracted from the
ERAS5 daily temperature data for each corresponding grid cell, centered on the year 1985.
To account for the higher temperatures in recent data, the climate change signal was sub-
tracted from the training data. As in Pappert et al. (2022), we used the EKF400v2 re-
analysis to determine this signal. The EKF400v2 is a global monthly climate reconstruc-
tion (Valler et al., 2021). As this covers the last 400 years, it can be used to estimate

the temperature difference between the historical and modern time period. Specifically,
we calculated the signal by subtracting the zonally averaged EKF400v2 temperature over
land from the zonally averaged temperature of the training period over land. This re-
sulted in a difference, which was subtracted from the processed ERA5 temperature for
each latitude. Next, we divided the preprocessed data into three portions (training, val-
idation, test) according to the block sampling presented by Schultz et al. (2021). These
range from 1965 to 2020 (training), 1955 to 1964 (validation), and 1950 to 1954 (test)
respectively. The first and largest block was used to train our models. The second was
used to examine the quality of the individual methods comprising WeRec3D. The test

set was used exclusively to assess how well our method is expected to perform on the his-
torical observations. Since the scales of the weather variables (°C, Pa) have a significantly
different order of magnitude, we performed a z-normalization to transform them into a
similar range of values.

Bronnimann (2022b) compiled a set of stations measuring temperature and pres-
sure over Europe in 1807. The station locations were chosen so that no more than one
time series occurs per 1° x 1° grid cell. In our study, we used a collection of weather
data based on this list. Table 1 lists our measuring stations and Figure 1 visualizes their
position in Europe. The historical measurements show further differences with respect
to the processed ERA5 grid data. On the one hand, the local conditions of the stations
may have changed, on the other hand, the measuring instruments and observation meth-
ods are not the same as today. In order to account for these biases, we used homogenised
data analogous to the work of Pappert et al. (2022) and Imfeld et al. (2023). To be able
to process the time series using our model, we must convert them into matrix form. We
defined its spatial area as 32x64, which corresponds to a latitude and longitude of 67N
to 36N and 22E to 41W. Each station position was mapped to the corresponding grid
cell in which it is located. This resulted in a four-dimensional matrix X € R(365,32,64.2)
The dimensions represent days, latitude, longitude and weather variables. We scaled the
values contained therein using the same statistics as for the ERA5 data.

Several studies (Gousios et al., 2023; Vaughan et al., 2022; Ivek & Vlah, 2023) have
successfully used geographic information, such as topography, in climatological deep learn-
ing models. Motivated by these studies, we also investigated the effects of adding ele-
vation data into our weather reconstructions, namely, the global elevation dataset ETOPO1
(NOAA National Geophysical Data Center, 2009). To feed elevational data into our model,
we needed to perform several preprocessing steps. In our target region, the data set spans
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‘ Station ‘ 1D ‘ Variable ‘ Lat ‘ Lon ‘

| Armagh | ARM | slp | 54.35 | -6.65 |
| Barcelona | BAR | ta | 4139 | 215 |
| Berlin | BER | both | 5257 | 13.31 |
| Cadiz | CAD | ta | 36.53 | -5.7 |
‘ Central Belgium ‘ CBT ‘ ta ‘ 50.85 ‘ 4.35 ‘
‘ Central England ‘ CET ‘ ta ‘ 52.5 ‘ -1.9 ‘
| Geneva | GVE | both | 462 |6.15 |
‘ Haarlem ‘ HAA ‘ both ‘ 52.38 ‘ 4.64 ‘
| Hohenpeissenberg | HOH | both | 47.8 | 11.02 |
‘ Karlsruhe ‘ KAR ‘ slp ‘ 49.01 ‘ 8.4 ‘
‘ London ‘ LON ‘ slp ‘ 51.5 ‘ 0 ‘
| Milano | MIL | ta | 45.47 | 9.19 |
‘ Mulhouse ‘ MUL ‘ both ‘ 47.75 ‘ 7.34 ‘
| Padova | PAD | both | 45.41 | 11.89 |
| Paris | PAR | both | 48.86 | 2.34 |
| Prag | PRA | ta | 50.07 | 14.41 |
| Rovereto | ROV | both | 459 | 11.05 |
‘ Schaffhausen ‘ SHA ‘ both ‘ 47.7 ‘ 8.64 ‘
| Stockholm | STK | both | 59.35 | 18.05 |
‘ St. Petersburg ‘ STP ‘ both ‘ 59.93 ‘ 30.27 ‘
| Torino | TOR | both | 45.07 | 7.68 |
‘ Uppsala ‘ UPP | ta ‘ 59.86 ‘ 17.64 ‘
| Valencia | VAL | both | 39.48 | -0.37 |
| Vilnius | VIL | ta | 54.69 | 25.28 |
| Warschau | WAR | ta | 52.28 | 20.96 |
| Wroclaw | WRO | ta | 51.11 | 17.03 |
| Yilitornio | YLI | both | 66.32 | 23.67 |
| Zitenice | ZIT | both | 50.56 | 14.16 |

Table 1. Stations used for the reconstruction of the year 1807. The abbreviations of the vari-

ables are ta - temperature; slp - pressure; both - if a station recorded the both variables.

~ L - 5~ B pessure
___.-a-'/

- = ® Temperature
c o s
ey o
-
¢

—

Figure 1. The spatial distribution of station locations over Europe. A blue square indicates

pressure, a red circle indicates temperature, and a purple pentagon indicates both variables.

areas between -6374m and 5381m a.s.l. Since the ERA5 data set describes surface vari-
ables, we assumed that the water depths are not relevant for modeling. Thus, we set all
values below -100m to -100m. This slightly negative threshold value is intended to make
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coastal regions smoother and ocean areas distinguishable from land area. We performed
average-pooling on these adjusted values to achieve a spatial resolution of 1°x1°. Fi-
nally, the values were normalized by min-max scaling.

3 Methodology
3.1 Modeling Principle

The weather reconstruction method proposed in this paper is based on video in-
painting, a technique to fill spatio-temporal holes with plausible content in a video (Dahun
et al., 2019). Instead of frames of a video with RGB values in the channel, we model daily
temperature and pressure fields. Figure 2 illustrates the principle of the video inpaint-
ing technique for weather reconstruction and the progression of the activation maps through-
out the network.

Input Sample Prediction
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Input Output
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Figure 2. Modeling principle of WeRec3D. The model takes five incomplete and consecutive
days as input consisting of temperature and pressure fields, binary masks and elevation data.

The output is the weather reconstruction of the corresponding days.

The modeling follows a sequence-to-sequence approach. As input we use incom-
pletely observed consecutive days. The output represents the estimate of the complete
fields for the corresponding days. Furthermore, a binary mask M is contained in the in-
put channel, which informs the model which cells to be interpreted as observed or miss-
ing. Here, 0 and 1 stand for observed and missing, respectively. For image processing,
the missing pixels in the RGB data affect all channels. When reconstructing weather vari-
ables, it can be the case that air pressure was observed at a certain location but tem-
perature was not, or vice versa. There may also be gaps in the time series. Our mask
must therefore represent the presence of observations per variable and time. We there-
fore define our mask according to Equation 1. As the masked, i.e. missing cells, anal-
ogous to pixels, must not contain None values, they are initialized with a default num-
ber. To do so, we use the mean of the respective weather variable. This substitute value
is calculated once for the training data and used in the same way for all other data sets.
The last instance of the input channel represents the elevation model over Europe. Hence,
WeRec3D receives an incomplete volume X € RFHW:2C+1) and outputs the recon-
struction Y € REHEW.O) p H W, C correspond to days, height, width, and chan-
nels, respectively. In our case, FF =5, H =32, W =64, and C = 2.



M € {0, 1} FHWC) where My ije=1, if Vk,z’,jzc is missing )
ke =0, otherwise

203 Our network is trained in a self-supervised manner. This means that the data ba-
204 sis for the model input and the ground truth is the same. As the training and valida-

205 tion data originate from a reanalysis, the meteorological fields are complete, i.e. fully ob-
206 served. In order to teach the model to estimate missing cells, we need to create artifi-

207 cially masked fields from the complete ERA5 meteorological fields. This masking can be
208 performed in two ways: either Missing Completely At Random (MCAR) or Not Miss-
200 ing At Random (NMAR). In the first case, the missing distribution is uniformly distributed

210 across the surface. The second variant results from the actual station locations of the

o inference data from 1807.

212 3.2 Model Architecture

213 The WeRec3D architecture builds on the CombCN network proposed by Wang et

214 al. (2019). In doing so, we retain the U-net-like encoder-decoder convolutional network

215 structure. In contrast to the original two-dimensional layers, we use three-dimensional

216 layers to seamlessly integrate the temporal dimension into a unified network. The ac-

217 tual number of layers and their number of filters as well as batch normalization after each

218 layer but the last is retained. The resulting model has 22°957°736 parameters, which cor-
219 responds to a size of 90MB. Table 2 documents the details of the layers, with downward

220 and upward arrows indicating the halving and doubling of the spatial size, respectively.
21 In contrast to CombCN, which used the Rectified Linear Unit (ReLU) activation func-
222 tion, our model uses the Exponential Linear Unit (ELU). This choice is due to the cen-
223 tered form of our weather data, which allows for negative values unlike the RGB data
24 of the original model, which is limited to the range [0, 1]. ReLU sets negative values to
225 zero after each layer whereby ELU allows them to be propagated through the network.
226 We, thus, assume better performance being achieved in our case by using the later ac-
207 tivation function. Only layers 15 and 16 use the tanh activation function. They limit the
228 corresponding activation maps to a range of -1 to +1. Finally, the identity function is
229 used after the last layer. Using a non-limiting function at the end shall enable the net-
230 work to generate potential outliers and thus effectively model extreme events.

231 The CombCN network uses dilated convolutions in the latent space of the network to

23 enlarge the receptive field of the output units. Thus, the kernel is inflated by artificially
233 enlarging the spaces between the filter elements (Yu & Koltun, 2016). Since the latent

234 space in our case is several times smaller than in the application of Wang et al. (2019),
235 we reduce the dilation rates accordingly.

236 During training, our algorithm seeks to minimize the loss function (Equation 4),

237 which consists of a linear combination of a masked mean absolute error (MAE) (Equa-
23 tion 2) and a normal MAE (Equation 3). Where © is the pixelwise multiplication, ||---||
230 is the [1-norm, Y is the ground truth, and B.S is the batch size. « controls the compo-
240 sition of the linear combination and is set to 0.5. In this way, WeRec3D is taught to gen-
2m erate the entire meteorological field with a stronger focus on the masked cells. This is

212 because in Equation 2, the errors in the reconstruction of the originally observed cells

213 are multiplied by zero and therefore not taken into account.

244 3.3 Physical Soft Constraint by means of Covariance Matrix Inclusion
25 Off-the-shelf deep neural networks do not necessarily obey the fundamental laws

246 of physical systems (Kashinath et al., 2021). As a result, model outputs can potentially
oa7 become physically impossible. However, it is vital to ensure such plausibility, especially
28 when making predictions for situations for which the model has not been explicitly trained.
249 Regularization techniques are used in machine learning to prevent overfitting, for exam-
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Layer No. Type Kernel Stride Filters Dilation Padding Activation

1 conv. (3,5,5) (1,1,1) 64 - same ELU

conv. | (3,4,4) (1,2,2) 128 - valid ELU
3 conv. (3,3,3) (1,1,1) 128 - same ELU
4 conv. | (3,3,3) (1,2,2) 256 - valid ELU
5 conv. (3,3,3) (1,1,1) 256 - same ELU
6 conv. (3,3,3) (1,1,1) 256 - same ELU
7 dilated conv. (3,3,3) (1,1, 1) 256 (1,2,2) same ELU
8 dilated conv. (3,3,3) (1,1,1) 256 (1,2,2) same ELU
9 dilated conv. (3,3,3) (1,1, 1) 256 (1, 3,3) same ELU
10 dilated conv. (3,3,3) (1,1,1) 256 (1,4, 4) same ELU
11 conv. (3,3,3) (1,1,1) 256 - same ELU
12 conv. 3,3,3) (1,1,1) 256 - same ELU
13 deconv. 1 (1,3,3) (1,2,2) 128 - valid ELU
14 conv. 3,3,3) (1,1,1) 128 - same ELU
15 deconv. 1 (1,3,3) (1,2,2) 64 - valid tanh
16 conv. (3,3,3) (1,1,1) 32 - same tanh
17 conv. (3,3,3) (1,1,1) 2 - same linear

Table 2. Network architecture of the WeRec3D model. In the type column, | and 1 indicate
the halving and doubling of the spatial size, respectively.

BS F

3 1My © —Yb’“)ll
MMAE(Y,Y, M 2
b=1 k=1
1Y - Y|
MAE(Y,¥) = BS-F-H-W.-CH )
L(Y,Y,M)=a-MMAE + (1 —a) - MAE (4)

ple, by extending the optimization function. Similarly, physical information can be in-
corporated by enhancing the loss function with prior knowledge. For instance, additional
terms can be included that describe physical relationships in the mappings. This trans-
forms the optimization space and can promote the convergence of the training process
to more plausible solutions (Jia et al., 2021). Such regularization only provides some guid-
ance towards a physically sound optimum, but does not enforce it and is thus also re-
ferred to as a soft constraint (Kashinath et al., 2021).

In weather reconstruction, field pattern analysis provides information about the relation-
ship between different variables and areas in space and time. For this purpose, climate
researchers use a principal component analysis, which is derived from the covariance ma-
trix of the meteorological fields (Luterbacher et al., 2002; Casty, Handorf, et al., 2005).
The covariance matrix describes the relationship between each grid cell and every other
position in the area under consideration. For example, Iceland and the Azores have an
inverse relationship with regard to air pressure (Stephenson et al., 2003). If the pressure
rises over Iceland, it falls over the Azores and vice versa. Such correlations can also be
seen for the temperature and intravariable in the covariance matrix.

Our application should be able to correctly reproduce such relationships in the recon-
struction. Therefore, we develop a physical soft constraint that informs the model of po-
tentially misaligned correlations between the predictions cells. The soft constraint is im-
plemented via an extension of the loss function according to Equation 5. Speciﬁcally, it
is the MAE of two covariance matrices, i.e. £(o7,07) = + Y1 |0z, — oF |. With o7
being calculated on the prediction of the model, 02y on the corresponding ground truth
The process of creating a covariance matrix is the same for both and is visualized in Fig-
ure 3. In the course of each training iteration, WeRec3D processes a batch of random
samples. Each sample contains five consecutive days, i.e. frames in the form of temper-
ature and air pressure fields. First, we flatten the meteorological fields and concatenate
their variables, creating a one-dimensional row vector for each day. The vectors are then
stacked to obtain a 2D matrix of the form days x cells. We then calculate the covari-
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ance matrix of this using the equation shown on the right of the figure. The formula is
chosen in matrix form to enable a high-performance implementation. Comprising con-
tinuous algebraic operations, it is inherently differentiable, which is a key ingredient for
backpropagation.

The constraint is added to the objective function through a linear combination controlled
by a hyperparameter 8. We set this to 0.9 so that the proportion of the physical soft con-
straint is 10%. In this way, the constraint slightly guides the learning process while the
original loss part remains decisive.

L(Y,Y,M)=8"(a-MMAE + (1 — a) - MAE) + (1 — 8) - £(c2,02) (5)

i h di +4 w X h x2
: d . w><{z><2 .

. X=us) % ot = CoBRLCBD

L4 ! i .

[ ]

[ ]

° dy+4

Sample 1

dy

Figure 3. Covariance Matrix Creation. Temperature and pressure are represented by the
colors red and blue, respectively. In the matrix on the right, these colors correspond to their
respective covariance values. The purple squares indicate the covariance values between tempera-

ture and pressure.

3.4 Training Details

The performance of inpainting tasks decreases with increasing missing rate. There-
fore, we expect that our model will have severe difficulties in learning and reconstruct-
ing weather phenomena based only on 1% observed cells. To overcome this obstacle, we
apply a training method, which we call incremental pre-training. Its aim is to gradually
familiarize the model with the actual reconstruction task by training it successively on
10%, 20%, ..., 90% and 99% missing rates. At each level, we use 10 epochs. Instead of
reinitializing the parameters of our network for the next percentage level, we use the weights
of the previous trained model. In other words, each reconstruction can benefit from what
has already been learned and build on it. In particular, the use of the normal MAE loss
component should contribute significantly to this, because it enables WeRec3D to learn
from the non-masked cells as well. We assume that relevant weather features will be learned
at low percentage levels and that this knowledge will be transferred up to the 99% rate.
However, this approach also poses a risk. Processing the same examples multiple times
could lead to the memorization of the training samples. To minimize overfitting, we only
pass the weights resulting from early stopping to the next initialization. That is, from
the epoch that results in the lowest validation error.

Generally, the more data a deep learning algorithm receives for training, the better it
performs. In the field of computer vision, the amount of training data is often artificially
increased by data augmentation. Data augmentation creates new samples from exist-
ing images or frames by cropping, rotating, distorting, or shading them with a color tone
(Shorten & Khoshgoftaar, 2019). These manipulations also increase the variability of the
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data, which reduces overfitting of models. The way in which the examples can be changed
depends always on the nature of the problem. In other words, the results of the manip-
ulation must still make sense in the context of modeling. For our use case, this means
that external influences on European weather, such as jet streams, must remain valid.

We therefore consider augmentations such as rotation or mirroring to be impractical. How-
ever, changing the spatial position seems sensible. The blue rectangle in Figure 4 shows
the base window of size 32x64. Our data augmentation approach now consists of mov-
ing this window in order to generate slightly different samples. Specifically, during train-
ing, each batch of samples is randomly manipulated twice. Thereby, the window size re-
mains the same, but the position comes to lie in the expanded region (33N to 73N and
24W to 44E). The potential shifts are illustrated by the red rectangles. For the valida-
tion of the reconstruction, we only use the base window.

WeRec3D uses Glorot initialization (Glorot & Bengio, 2010) for weights, minimizes the
loss function with the default parameterised Adam optimization (Kingma & Ba, 2017)
during training, and processes data in batches of 16 samples.

r
ol o o

)
<

I

Figure 4. Illustration of Moving Window Sampling. The default or base window is indicated

by the blue rectangle, possible shifted areas are indicated by the two red rectangles.

3.5 Creating WeRec3D: Building the Leading Method through Itera-
tive Enhancements

WeRec3D leverages various strategies to enable an accurate reconstruction capa-
bility when rates of missing data are high. In this section, we outline the iterative eval-
uation process that led to our final methodology. Specifically, this involves six enhance-
ment techniques that were included or omitted in the training process. (i) Use of cli-
matology (Clim.) instead of the anomaly used in classical weather analysis. (ii) In-
cremental pretraining (IPT) instead of directly modeling a missing rate of 99%. (iii)
Spatially moving window (MovWin): During training, we feed the network with
meteorological fields that are sampled at different spatial locations rather than just at
a fixed position. (iv) Soft constraint on the loss function (SC): A physical restric-
tion that steers the learning process towards a more plausible local optimum. (v) El-
evation data (Elev.) as a further predictor. (vi) Physically-informed initializa-
tion (PII): This technique is borrowed from Yao et al. (2023) and aims to start the in-
painting process with a relatively reliable and physically plausible basis in the missing
areas. Instead of using the same initial value for all masked cells, each cell is individu-
ally initialized with the corresponding average value over time.

It is impossible to predict in advance whether the strategies introduced and their com-
binations will positively or negatively affect the quality of the reconstruction. Analyz-
ing all possible combinations would yield 64 method variants, as 26 = 64. Therefore,
our objective is to streamline the search for the most effective combination. To achieve
this, we apply an iterative heuristic to efficiently find a leading method in its local neigh-
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345 borhood. Thereby, we imagine the combination of techniques as a tree. The root node

346 is the baseline model, followed by all six strategies on the first level. Each node is suc-

347 ceeded by the techniques that were not previously encountered on the path leading to

348 the node. Our iterative discovery procedure proceeds as shown in the enumeration be-

349 low. Depending on the improvement of an additional extension, the tree is traversed in

350 a depth-first-search or a breadth-first-search manner.

351 1. We start by naming the base model, which serves as the first reference point, the
352 leading method. We then move on to the first level of the tree.

353 2. Select a node at the current tree level that has not yet been visited.

354 (a) We analyze the resulting accuracy and compare it to that of the leading method.
355 (b) If the performance is significantly better, this approach becomes the new lead-
356 ing method. We then traverse the tree one level further and start again at Step
357 2.

358 (c) If the quality is not significantly better, we visit the next unvisited node at the
350 current level and repeat Step 2.a).

360 (d) If no significantly better performance could be achieved, we choose the tech-

361 nique that most reduced the error. This is now considered the leading method.
362 We go down one level along the corresponding node and move back to Step 2.

363 (e) If no technique was able to reduce the error, the search is complete. The same
364 applies if we have reached a leaf node.

365 3. After completion of the search, the combination marked as leading method is our
366 choice for the best modeling, that is, WeRec3D.

367 We set the significance level to 90%. Consequently, a newly added technique must
368 reduce the error compared to the last leading method to at least 90% to be considered

369 a significant improvement. In addition, we set the random seed to the same value for each
370 experiment to make them comparable to each other. Thus, the weights are initialized

an in the same way each time, and the shuffle of the samples results in the same order for

372 each trial. In addition, the same masking, i.e. the artificial deletion of cells, is used in

373 every experiment. The cells to be interpreted as observed or missing are based on a ran-
374 dom uniform distribution over the field.

375 Section 4.1 shows the results of this evaluation. The best validation metrics were achieved
376 by combining the techniques i to v.

377 3.6 Accounting for the Station Distribution in 1807

378 Different historical periods may exhibit a different spatial distribution of the weather
379 stations at that time. For the inference of the year 1807, this corresponds to the posi-

380 tions in Figure 1. Consequently, all fields have the same observed cell positions, apart

381 from the few gaps in the temporal dimension. Every cell in which there is no station is

382 to be regarded as missing. We refer to such masking as Not Missing At Random(NMAR).
383 For the evaluation described in Section 3.5, however, we used a Missing Completely At

384 Random (MCAR) distribution of the observations. This means that the positions of the
385 missing cells are set randomly in the spatial dimension. Thus, in contrast to NMAR, all
386 fields have different observation positions. We use MCAR masks to assess the techniques
387 independently of a specific historical event and its weather station positions.

388 However, we assume that a reconstruction based on an NMAR input is more difficult

389 than on MCAR observations, because the variability of the information available to the
390 model is reduced. To evaluate this assumption, we analyzed how the resulted leading method
301 performs when given NMAR-masked validation data as input. Next, we compared the

302 corresponding accuracy with two approaches that specifically adjust the model to the

303 NMAR distribution: NMAR training and NMAR fine-tuning. This comparison was still
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made based on the validation set. Only the best-performing strategy will be further ex-
amined based on the test set in Section 4.3 to provide an estimate for inference.

With NMAR training, we incrementally train at several percentage levels in the sense
of incremental pre-training. However, the observations are now statically defined as the
same for all samples per variable. Figure 5 illustrates the corresponding masks of the tem-
perature variable. The white cells indicate masked areas, and the black pixels represent
the locations treated as observed. Thereby, the observed region decreases spherically in
the direction of the station positions as the missing rate increases. The 99% level thus
corresponds to the observation locations of the target year 1807.

For the second approach, NMAR fine-tuning, the model is not taught from scratch. In-
stead, we fine-tune the leading model which was trained on a MCAR distribution to fo-
cus specifically on the observation positions of 1807.
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Figure 5. Masks used for NMAR training. White and black represent the missing and ob-
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served areas, respectively. The region of observed cells decreases spherically towards the station

positions of 1807.

3.7 Artificially Increasing the Proportion of Observations Through ARM
Enhancement

Our analyzes showed that the validation error increases exponentially between 90%
and 99% missing rates. Therefore, the reconstruction accuracy for the year 1807 could
presumably be significantly improved if a small number of additional observations were
available. However, the retrieval of further historical weather logbooks is very time-consuming.
For this reason, we are investigating whether the reconstruction quality can be improved
by artificially increasing the proportion of observations. By an artificial increase we mean
the input of additional cell values that are plausible in relation to the respective field per
day. Specifically, we borrow these values from the Analogue Resampling Method (ARM)
(Lorenz, 1969).

ARM is a common and successful statistical model used for weather reconstruction (Brénnimann,
2022a; Pappert et al., 2022; Pfister et al., 2020; Imfeld et al., 2023). The model assumes
atmospheric state patterns will repeat themselves over time. If one state is similar to an-
other, the resulting local weather effects are presumably similar (Lorenz, 1969). The idea
of ARM-based weather reconstruction is in principle comparable to the kNN algorithm
with £ = 1. One takes a historical day whose field was not completely observed, i.e. a

day whose missing field cells one wants to reconstruct. From a pool of fully observed fields,
the ARM selects the day that best matches the observation locations of the historical

day. Based on the above assumption, the two days have similar local weather effects. The
selected day is called the best analogue. It represents the reconstruction of the weather

in the unobserved areas in the past (Bronnimann, 2022a).

For each incomplete day in 1807, we searched for a similar complete field from the ERA5
training dataset. We then randomly replaced 3% of the unobserved cells of each histor-
ical field with the cell values of the respective best analogue and treated them as observed.
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This artificially decreases the missing rate of the inference data from 99% to 96%, re-
sulting in observations that approximate a MCAR distribution. In accordance with this
distribution, we refined the training process of WeRec3D to reconstruct the year 1807
with this enhanced input. We have again trained the model on several MCAR, percent-
age levels, but replaced the final 99% mask with a 96% mask. The corresponding results
are shown in Section 4.4.

4 Results and Discussion
4.1 Evaluation of the Creation of WeRec3D.

In this section, we analyse the iterative creation of WeRec3D. Table 3 shows the
experiments performed and their performance on the validation data at 99% MCAR. For
better comparability, we calculate all validation metrics based on the anomalies of the
prediction and the ground truth. The order from top to bottom corresponds to the dis-
covery procedure described in Section 3.5. The six columns on the right-hand side show
which extensions were included in the experiment. In addition to the specific validation
MAE value, we indicate whether the experiment led to a leading method (LM) and to
which degree the error has decreased (Err. Dec.) compared to the previous LM.

Our finding procedure starts with evaluating the baseline (1). This means only train-

ing the convolutional network on anomalies and without additional extensions. The first
evaluated strategy, the preservation of climatology (2), was already able to significantly
reduce the validation error to 77%. Therefore, we kept this approach directly and inves-
tigated incremental pre-training (3) based on it. This further reduced the error of the
current leading method to 67%. The next four experiments (3.1 to 3.4) operate at the
same tree level. At this point, no technique was able to significantly improve the qual-

ity. Only the addition of elevation data as a further predictor has a minimal positive ef-
fect. For this reason, the corresponding node becomes the new leading method. Three
extensions remain, which are validated in experiments 4.1 to 4.3. The spatially moving
window method is the only one that slightly reduces the error. After its contribution,

two potential approaches remain (5.1 and 5.2). At this level, the physical soft constraint
(5.1) wins the race, although not significantly. After that, the physically informed ini-
tialization (6.1) fails in providing better performance.

A noticeable finding in this analysis is the synergy between Elev, MovWin and SC. Ini-
tially, neither MovWin nor SC was able to reduce the error. Only when combined with
the additional elevation data did the moving window technique lead to a reduction in

the validation MAE. We assume that without the topography, the model has difficul-

ties distinguishing between the differently sampled window positions. These difficulties
seem to outweigh the added value of data augmentation through MovWin. However, as
soon as the orientation of the model is supported by the topological input, the recon-
struction quality improves. The situation is similar with the physical soft constraint (SC).
This improvement technique only has a positive influence when it is combined with MovWin.
The soft constraint is based on the covariance matrix, which is calculated using the fed
fields. If the position of the fields remains the same and there are enough samples (in

our case N = 80), the covariance matrix should always appear fairly consistent. In this
case, the model can only gain limited information from it. The MovWin technique changes
the field position for each batch. As a result, the information content about the mete-
orological correlations also increases, which argumentatively leads to an increase in ac-
curacy.

The heuristically best combination (marked with *) was able to reduce the error
compared to the baseline to 48%. Scaled back to the actual units, this results in a MAE
of 0.85 °C and 122 Pa for temperature and pressure respectively. The spatial and tem-
poral distribution of the MCAR validation error can be seen in Figures 6 and 7. Our model
exhibits the most pronounced challenges in accurately reconstructing temperatures within
the regions of Iceland and Norway. In these areas, the average error is greater than 2 °C.
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‘ Experiment ‘ Val MAE ‘ LM ‘ Err. Dec. ‘ Clim. ‘ IPT ‘ MovWin ‘ SC ‘ Elev. ‘ PII ‘

| 1: Baseline | 0.2144 | v | - | | | \ \ \ \
| 2: Clim. | 0.1654 | v | % | v | | | | | |
| 3: IPT |oat064 | v | 6% | v | v | | | | |
| 3.1: MovWin | 0.1244 | - | - | v | v | v | | |
| 3.2: SC | 0.1138 | - | - | v | v | | v | | |
| 3.3: Elev. | 0.1106 | v | 9996% | v | v | | | v |
| 3.4: PII | 0.1131 | - - | v | v | \ \ | v |
| 4.1: MovWin | 0.1064 | v | 9%% | v | v | v \ | v | \
| 4.2: SC | 0.1133 | - - | v | v | | v | v | |
| 4.3: PII | 0.1142 | - | - | v | v | | | v | v |
| 5.1: SC (*) | 0.1032 | v | 9% | v | v | v | v ] v | |
| 5.2: PII | 0.1084 | - | - | v | v | v | v | v |
| 6.1: PII | 0.1093 | - - | v | v | v | v | v | v |

Table 3. Validation errors of differently combined enhancement techniques, with * marking
the lowest error. In the LM column, a v'indicates whether a technique led to a leading method.
Err. Dec. shows the amount by which the error was reduced compared to the previous leading
method. A v'in the remaining cells indicates the investigated techniques in each experiment (see

Section 3.5 for abbreviations).

In Central Europe, the temperature error is around 1°C; over the sea it is even less than
0.5 °C. The situation is different for pressure. Here, only the areas at the edge of our win-
dow cause difficulties; a phenomenon that is typical for CNN-based models. The spa-
tially summarized errors show a clear seasonality in both variables. The winter months
appear to be reconstructed with less accuracy and higher variability than the summer
months. Particularly noteworthy is the outlier of the temperature error in February, which
is almost 3 °C. According to Portenier et al. (2017), Western Europe was hit by a severe
cold wave in February 1956, which led to exceptionally low temperatures in the region.
Our model has great difficulty in accurately reconstructing the conditions at that time.

In fact, the five highest temperature errors on the validation set occur between 1956.01.30
and 1956.02.05 with p = 2.05 °C and ¢ = 0.34 °C.

4.2 Evaluation based on NMAR Distributed Observations

In this section, we investigate how the leading method performs on NMAR input
and compare it to the alternative strategies NMAR training and NMAR fine-tuning. Ta-
ble 4 presents the validation metrics for the leading method using MCAR and NMAR
input, as well as for the alternative strategies using NMAR, input. The performance of
the leading method approximately halves on NMAR input compared to MCAR input.
The alternative training strategies, which are designed for the specific station distribu-
tion of 1807, show significantly improved performance under NMAR conditions. The two
outcomes are nearly indistinguishable, both showing practically the same normalized MAE
values. Only when the metrics are scaled proportionally to the share of each variable do
subtle differences emerge. Given that we place greater importance on improvements in
the temperature variable compared to the pressure variable, we have opted for NMAR
training as our training strategy for subsequent inference tasks. However, this approach
still has a significantly higher error than if the input were MCAR. This is justified by
the fact that with NMAR, the model must extrapolate into regions where it has no prior
knowledge, whereas with MCAR, it predominantly interpolates between observed data
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Figure 6. Spatial error of temperature and pressure over time during 1955 to 1964 for valida-
tion and during 1950 to 1954 for test. The top row results from MCAR validation data modeled
by the leading method, the middle row from NMAR validation data modeled by the NMAR
trained model, and the bottom row from the test data modeled by the NMAR trained model.
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points. Figures 6 and 7 (middle row) display the spatial and temporal validation error

resulting from the NMAR training strategy. The NMAR distribution of the observations

has a strong effect on spatial quality. In Central Europe, the area with a high density

of observations, errors tend to be low. However, for both temperature and pressure, er-
rors increase with distance from the areas with a high spatial coverage of observations.
The error over time exhibits seasonality with larger errors in the winter months compared

to the summer months.

| Strategy | Input distribution | Val MAE | ta [°C] | slp [Pa] |
| Leading Method | MCAR | 0103 | 085 | 122 |
| Leading Method | NMAR | 0238 | 18 | 301 |
| NMAR Fine-tuning | NMAR | 0154 | 115 | 196 |
| NMAR training | NMAR | 0153 | 111 | 199 |

Table 4. Validation errors on Completely-Missing-At-Random and Not-Missing-At-Random

inputs with 99% missing rate.
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Figure 7. Temporal error of temperature and pressure over time during 1955 to 1964 for

validation and during 1950 to 1954 for test. The top row results from MCAR validation data
modeled by the leading method, the middle row from NMAR validation data modeled by the
NMAR trained model, and the bottom row from the test data modeled by the NMAR trained

model.

4.3 Evaluation based on the Test Set

We have now arrived at an appropriate methodology for inference, i.e. the recon-
struction of the weather in 1807, by training WeRec3D from scratch using NMAR masks
as shown in Figure 5. Up to this point, all evaluations of our approaches have been based
on the validation data set. Thus, one can expect that the chosen method exhibits an ar-
tificial skill to a certain extent. To more accurately assess the quality of the model, we
are conducting a weather reconstruction on the test set (1950 to 1954) in this section.
The test set anomaly MAE amounts to 0.156 (1.15 °C and 201 Pa) given a NMAR in-
put with 99% missing cells. This error represents a mere 2% increase compared to the
validation data, suggesting a robust generalization capability of our methodology. Fig-
ures 6 and 7 (lowest row) display its spatially and temporally distributed errors, which
strongly resemble the errors of the NMAR validation data (middle row).

4.4 Evaluation of the Reconstruction over Europe in 1807

In this section, we perform the actual reconstruction of the historical weather mea-
surement of 1807. In contrast to the previously used reanalysis data, we do not have com-
plete ground-truth fields available for validation. Since we only have 43 time series of
the measuring stations for the year 1807, we cannot do a full spatial assessment. Instead,
we carry out a leave-one-out (LOO) procedure over space by running 43 reconstructions
and for each run leaving out one time series. The thereby generated predictions of the
corresponding cell are then compared with the omitted observation. Some processing steps
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are required to perform the LOO cross-validation. First, the seasonality in the temper-
ature data has to be removed since otherwise, the correlation is influenced by the an-
nual cycle of temperature. Therefore, we fit the first two harmonics using linear regres-
sion as it has been done by Pfister et al. (2020). This results in a sine-like function that
is subtracted from the corresponding temperature data. For pressure data, we validate
on its daily anomaly, calculated with respect to the deviation from the long-term aver-
age of each day of the year. To display all measurements in the same plot, they are nor-
malized by dividing the RMSE and the two standard deviations by the standard devi-
ation of the corresponding observation. All observations have, therefore, the same ref-
erence point and show uniform metrics for their prediction.

In the following, we begin with the evaluation of the weather reconstruction using the
WeRec3D model trained on NMAR masks. Then we show the performance of the recon-
struction whose input was enhanced with ARM cells as described in Section 3.7.

Figure 8 (top) shows the quantitative metrics resulting from the LOO procedure
for the 43 time series in a Taylor plot (Taylor, 2001). About half of the values are closely
centered around the optimal reference point, indicating a high accuracy of the reconstruc-
tion. Each time series was reconstructed with at least a correlation of 0.91 and a max-
imum normalized RMSE and standard deviation delta of 0.58 and 0.51 respectively. The
best (St. Petersburg) and worst (Central Belgium) reconstructed temperature time se-
ries are shown in Figure 9. This comparison is intended to illustrate the range of qual-
ity of the remaining reconstructions. St. Petersburg has the lowest and the Central Bel-
gium time series the highest normalized RMSE value among the anomaly temperatures.
In the Taylor plot, the Belgian station corresponds to the blue marker at the top right.
The most accurate prediction is almost congruent with the target series. Similar qual-
ities can therefore be expected for markings close to the reference point. The worst pre-
diction (Central Belgium) tends to have a negative bias in winter and a positive bias in
summer. Depending on the day, the absolute error can be greater than 5 °C. However,
the normalized correlation with the historical observation is still over 0.95, which can be
clearly seen in the graph. This is because even if the prediction often overshoots the tar-
get, the deflection of the curve heads nevertheless generally in the right direction.

The results produced using ARM enhanced input differ from the variant without
it in a subtle but potential important characteristic. As can be seen in Figure 8 (bot-
tom), there is now a small gap between the reference point and the best reconstruction.
This means an increase in the normalized RMSE and a very slight degradation of the
correlation for the best reconstructions. However, it can be clearly seen that the normal-
ized standard deviations of the predictions are now less broadly distributed and are in-
creasingly on the left side (0 < 1). The variance of these predictions, thus, tends to be
lower than that of the prediction without ARM enhancement and also lower compared
to the corresponding reference series. The reconstructed stations show a correlation of
at least 0.84 and a maximum normalized RMSE and standard deviation delta of 0.54
and 0.27 respectively.

5 Conclusion

In this paper, we set out to investigate the potential of artificial intelligence for weather
reconstruction. As a result, we propose a tailor-made network architecture, called WeRec3D,

which has been optimized by innovative extensions of the modeling process to the ex-
trapolation of daily pressure and temperature fields. The resulting method allows the
reconstruction of historical weather observations describing only one percent of the area
in Europe on a 1°x1° resolution grid, i.e. a gap filling of data with 99% missing rate. Fur-
thermore, the modular design of our solution allows the inclusion of additional weather
variables as well as the use of different resolutions of the space-time volume. This makes
it suitable for reconstructing arbitrary historical events.

—17—



LOO Pressure

LOO Temperature

282 280
18 = 18
Q
1.6 16 6 O
BEENEEAANA Y
14 L4} =7 O
\.‘,
1.2 1.2 |27
L
ta 1.0 1.0 -~ i
= Ref 0.8 0.8 = Ref
® BAR ® ARM
® BRL 0.6 0.6 ® BRL
e CAD ® GVE
e T 04 0.4 > * HAA
b o

* CET N % ® HOH

* GVE 0.2 0.2 v © e AR

¢ HAaA : 1 - ; i 1 - LON

0.0 s W T ST W W S 0 S ; 0.0 i IR S T T T '

N :IOLH 0.0 02 0.4 06 08 1.0 12 14 16 18 2.6 0.0 02 0.4 06 08 1.0 12 14 16 18 2.6° L"AUDL
MUL Standard deviation Standard deviation PAR
PAD LOO-ARM Temperature LOO-ARM Pressure ROV

po 0 po

PAR 2. L2 2. SHA
PRA 10 STK
pov LB Lap sTP
SHA 16} 16 * TOR
STK & VAL
STP 14} 14 e W
TOR o] e AT
uPP 1.2 fu” 1.2

* VAL

oo 1.0 foeennl 1.0

® WAR )

e wro 08F 0.8

o YU o

. 77 0.6 ’/ &) 0.6

0als 0.4
i o \
r 1<} Yy
0.2 © 0.2 3.’
: P T 0.0 . F

0.0 il i Il Il oy . 1 1 1 L1 L =
0.0 02 0.4 06 08 1.0 12 1.4 1.6 18 2.8 0.0 02 04 06 08 1.0 1.2 14 16 1.8 2.6
Standard deviation Standard deviation

Figure 8. Leave-one-out validations in space of 1807 using WeRec3D trained on NMAR
masks (top) and using ARM enhanced input (bottom).
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Figure 9. The temperature reconstructions of 1807 yielding the best (top) and worst (bot-

tom) RMSE score. The ground truth and reconstruction are shown in blue and red, respectively.
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The basic building block of our method is a neural network consisting of three-dimensional
convolutional layers. These enable the simultaneous modeling of space and time. The
adopted modeling extensions in combination reduce the reconstruction error of WeRec3D
by factor two. In contrast to classical weather analysis, our method works best on pure
climatology and not on its anomaly. The use of a moving-window method to sample the
weather fields leads to an increased variability of the inputs and thus to an amplified gen-
eralization capability. Elevation data - as a further predictor - of the corresponding ar-
eas support the orientation. To guide the learning process to a physically plausible lo-

cal optimum, we apply a soft constraint to the loss function. This is derived from the
covariance matrix of the meteorological fields, which describes the intervariable relation-
ships between temperature and pressure. Through incremental pre-training on succes-
sively increasing error rates, the model learns weather patterns. The acquired knowledge
can then be reproduced even if the input is 99

The type of distribution of the observation positions has a decisive influence on the qual-
ity of the reconstruction, meaning that the accuracy of randomly distributed measure-
ments is approximately twice as high as if they are distributed at fixed positions. How-
ever, the performance of weather modeling can be considerably improved if the algorithm
is specifically trained on the positions of the expected observations. Alternatively, the

artificial reduction of the missing rate using the analogue resampling method offers a promis-

ing solution. To verify the effectiveness of our reconstruction model, validation was per-
formed on both recent and historical data. The analysis of the year 1807 shows a strong
correlation and marginal RMSE values during the LOO validation in space across the
weather stations.

Future work will explore the application of WeRec3D to other regions and periods, the
improvement of its interpretability and the incorporation of further predictors.

Open Research Section

The code and data required to replicate the results discussed in this paper are avail-
able on GitHub and have been archived with a DOI. You can find the code at https://
github.com/YannisSchmutz/WeRec3D/tree/v1.0.0 (Schmutz, 2024).
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