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ABSTRACT: Nutrient cycling in the ocean is mediated by physical mixing processes that span

diverse spatial and temporal scales. New biogeochemical profiling floats (BGC-Argo) have begun to

observe nutrient distributions globally, but their 10-day cycling period limits the types of processes

they can capture. Small-scale dynamics, occurring on O(1) day and O(1) km, remain particularly

difficult to observe in-situ. Here, we show that random forest regression (RFR) can recover high-

frequency information by leveraging the sampling strategies of multiple ocean profilers. Our

RFR is trained, validated, and tested on BGC-Argo and shipboard data to within ∼3% accuracy,

then applied to observations from two rapid-sampling Seagliders deployed during the Southern

Ocean Glider Observations of the Submesoscale (SOGOS) experiment in 2019. This approach

generates novel nitrate distributions at 50 times the horizontal resolution of the original float data.

Using the high-resolution RFR outputs, we identify signatures of nutrient injection into the mixed

layer that coincide with enhanced stirring in a turbulent region downstream of the Southwest

Indian Ridge. Relating these intermittent transport events to biological time series suggests that

small-scale stirring mediates additional nutrient drawdown and primary production in this region.

In our exploration of high-frequency nitrate variability in the Southern Ocean, RFR extends the

capabilities of the BCG-Argo array and allows for deeper understanding of biogeochemical cycling

at a more comprehensive set of scales. As a flexible approach that can be generalized to suit

other multi-platform observing systems, RFR presents new opportunities to maximize value from

existing datasets.
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SIGNIFICANCE STATEMENT: We use a regional random forest regression (RFR) to leverage33

data from multiple ocean observing instruments that offer different advantages. In our study of34

the Southern Ocean, we use RFR to produce new nutrient maps at 50 times higher resolution35

than previously possible. By estimating small-scale information, RFR reveals interactions between36

physical and biological processes during rapid mixing events that are normally difficult to observe.37

These short-lived interactions appear to be important in determining local nutrient content and38

therefore biological activity in this important ocean basin. Similar machine learning approaches39

that can be applied regionally will extend possibilities for how we use data from increasingly40

advanced ocean platforms.41

1. Introduction42

The ocean is mixed by physical processes spanning a wide range of temporal and spatial scales,43

which mediate biogeochemical interactions in distinct ways. Nutrient distributions differ at basin-44

wide scales and are broadly determined by the global circulation. At the mesoscale (horizontal45

scales on O(20–200 km), evolving over weeks to months), lateral and vertical nutrient transport46

processes are associated with coherent eddies that modify the density structure of the upper ocean47

(Su et al. 2021; Patel et al. 2020; Levy and Martin 2013; Mahadevan and Archer 2000). These48

widespread features subject local nutrient distributions to competing processes that are both depth-49

dependent (biological utilization and remineralization) and density-dependent (transport along50

isopycnals; Omand and Mahadevan (2013)). When eddy-associated motions transport nutrients51

across the base of the mixed layer, increased availability in the biologically active surface layer can52

enable more primary production if that nutrient was previously limited.53

Over smaller distances and shorter periods, nutrient distributions are also impacted by high-54

frequency motions at the submesoscale (scales of O(1) day and O(1) km; Lévy et al. (2024, 2018);55

Mahadevan (2016); Lévy et al. (2012); Thomas et al. (2008); Mahadevan and Tandon (2006)).56

Submesoscale dynamics are associated with enhanced vertical velocities, typically localized to57

filaments and fronts, that cause vigorous exchange between the interior and surface ocean (Taylor58

and Thompson 2023; Freilich and Mahadevan 2019; Thomas et al. 2008; Brannigan 2016). These59

processes can exert a strong influence on local primary production and carbon export since light60

and nutrient availability change rapidly with depth (Lévy et al. 2018; Klein and Lapeyre 2009;61
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Erickson and Thompson 2018). Nutrient transport at submesoscales is particularly important for62

mediating biological processes since motions at these scales occur on the same timescales as63

phytoplankton growth (Mahadevan 2016). Vertical nutrient mixing along strongly tilted density64

surfaces, including at submesoscale fronts, may be a significant pathway for nutrient fluxes in65

highly turbulent regions depending on the structure of the nutricline (Freilich and Mahadevan66

2019).67

The Southern Ocean is one such energetic region, enriched in mesoscale eddies and submesoscale68

stirring, that has outsized importance in the global climate and carbon system due to its distinctive69

physical circulation and biogeochemical distribution (Gray 2024; Henley et al. 2020; Rintoul and70

Naveira Garabato 2013; Talley 2013). Model simulations of Southern Ocean dynamics have71

suggested that submesoscale stirring is a significant mechanism by which deep waters, enriched in72

iron and other remineralized nutrients like nitrate and phosphate, exchange tracers into the surface73

mixed layer (Uchida et al. 2019; Balwada et al. 2018). One experiment found that increasing the74

resolution of a Southern Ocean biogeochemical model from 100 km to 2 km resulted in a nearly75

two-fold increase in production due to nutrient injection into the mixed layer (Uchida et al. 2020).76

Other numerical simulations suggest that where there are strong flow-topography interactions,77

submesoscale upwelling may be the predominant mechanism by which dissolved iron reaches the78

upper Southern Ocean (Rosso et al. 2016). These turbulent contributions to the nutrient supply79

have global effects since the Southern Ocean is a central site of water mass formation (Talley80

2013). Unfortunately, the challenges of sampling at the resolution required to observe these81

small-scale dynamics have restricted our ability to constrain high-frequency nutrient fluxes using82

in-situ observations. The impact of short-lived, filamentary mixing processes on upper nutrient83

distributions remains poorly constrained using observations.84

New observing technologies have emerged in the last twenty years to address this knowledge85

gap, including autonomous profiling instruments called Argo floats. The deployment of thousands86

of Argo floats has enabled new observation-based studies in previously undersampled regions (e.g.87

Wong et al. (2020); Swart et al. (2023)). Some newer Argo floats, known as Biogeochemical-88

Argo (BGC-Argo) floats, have been further equipped with biologically relevant sensors for oxygen,89

nitrate, optical backscatter, and chlorophyll fluorescence (Claustre et al. 2020; Sarmiento et al.90

2023; Roemmich et al. 2019). Although the Argo floats provide invaluable coverage of the global91
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oceans, their characteristic profiling period of 10 days makes them more suitable for observing92

processes at the mesoscale and larger. Ocean gliders are a different type of autonomous instruments93

that sample much more rapidly than floats, returning profiles of the ocean interior every 4–6 hours,94

and have provided novel observation-based insights into submesoscale physical mixing processes95

(e.g. Rudnick (2016); Thompson et al. (2016); Erickson et al. (2016); Erickson and Thompson96

(2018); Balwada et al. (2024)). Recent gliders have been equipped with sensors for oxygen, nitrate,97

phosphate, pH, and optical properties (e.g. Possenti et al. (2021); Vincent et al. (2018); Birchill98

et al. (2021)), but most Seagliders to date have not been deployed with a full suite of biogeochemical99

sensors due to challenges with power demand, temporal responsiveness, and measurement drift100

(Chai et al. 2020).101

Here, we leverage these different sampling strategies using random forest regression (RFR) in102

order to characterize small-scale, biogeochemical-physical interactions from in-situ ocean obser-103

vations. Focusing specifically on nitrate variability in a turbulent region of the Southern Ocean, we104

design a RFR model to maximize the information gained by two Seagliders deployed during the105

Southern Ocean Glider Observations of the Submesoscale (SOGOS) mission in 2019. The regional106

RFR is trained using nearby ship-based and BGC-Argo observations, including one BGC-Argo107

float deployed in tandem with the SOGOS Seagliders. After validating model performance, we108

apply the RFR to predict high-resolution, depth-resolved nitrate fields along the glider tracks and109

identify new signs of enhanced nitrate variability at high frequencies.110

The observational data are described in Section 2, followed by an explanation of the RFR111

methodology and performance evaluation in Section 3a–b. Methods of characterizing the RFR112

nitrate using time series and wavelet analysis are given in Section 3c and Section 3d, respectively.113

In Section 4a, we demonstrate the strong performance of our Southern Ocean RFR before applying114

it to Seaglider observations to generate novel, high-resolution nitrate maps. Section 4b highlights115

relationships between different physical and biological time series in the upper ocean, while Section116

4c explores what timescales of variability are important for nutrient transport events. We conclude117

with broader implications of this work in Section 5 by commenting on the utility of deploying118

heterogenous in-situ platforms together, as well as the applicability of RFR for bridging data gaps119

in other observing systems.120
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2. Data121

During the 2019 SOGOS experiment, two Seagliders (SG659 and SG660) were deployed along-122

side a BGC-Argo float (WMO 5906030; hereafter the SOGOS float) on the I06 Global Ship-based123

Hydrographic Investigations Program (GO-SHIP) cruise. The two Seagliders were outfitted with124

temperature (T), salinity (S), and pressure (p) sensors on an unpumped CTD (Conductivity-125

Temperature-Depth instrument; CT-Sail) and an oxygen (O2) optode (Aanderaa 4330 standard126

foil). Chlorophyll fluorescence and optical backscatter data at 470 nm and 700 nm were also127

collected (WETLabs ECO puck). GO-SHIP stations provided T and S measurements as well as128

discrete nitrate and oxygen concentrations from bottle data. The SOGOS BGC-Argo float, as well129

as the other six BGC-Argo floats in this region (see Appendix) that are used for RFR training, were130

equipped with sensors for T, S, p, O2 as well as nitrate, fluorescence, and backscatter. To match131

the vertical range of the Seagliders, only BGC-Argo and GO-SHIP observations down to depths132

of 1000 m are used. For all platforms, time is reported as days elapsed since January 1, 2019133

(yearday). Conservative temperature (CT), absolute salinity (SA), potential density(𝜎0), spice134

(𝜏), Brunt-Väisälä buoyancy frequency (𝑁2), and oxygen saturation (O2𝑠𝑎𝑡) were calculated using135

the Thermodynamic Equation of Seawater 2010 (TEOS-10) Python toolbox (IOC et al. 2010).136

Processing of all platform data is further described in the Appendix.137

The Seagliders sampled for 86 days, from May 1, 2019 to July 25, 2019, covering a region138

spanning approximately 30–40°E and 50–54°S (Figure 1a). SG659 and SG660 completed 456139

and 502 V-shaped dives, respectively, to ∼1000 m depth and sampled during both the descent140

and ascent. The gliders generally surfaced every 4–6 hours (profiles every 2–3 hours) while the141

BGC-Argo float sampled with a 5-day profiling frequency (16 profiles within the duration of the142

Seaglider missions). After being deployed along the 30°E I06 cruise track around −51.5°S, the143

three SOGOS profilers were advected eastward by the Antarctic Circumpolar Current (ACC). The144

Seagliders pass through a standing meander region by the Southwest Indian Ridge (SWIR) on145

yeardays 120–150, which is a known hotspot of enhanced eddy kinetic energy (EKE) (Balwada146

et al. 2024; Yung et al. 2022). Further details on the deployment and trajectories of the Seagliders147

are described in Dove et al. (2021).148

Surface EKE over the SOGOS deployment is characterized using the delayed-time multi-149

satellite gridded product (1/4° resolution) for sea level heights and derived variables pro-150
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Fig. 1: (a) Trajectories for Seagliders SG659 (blue) and SG660 (magenta) and SOGOS float profile
locations (yellow diamonds). Grey box denotes the area in panel (b), showing an expanded view of
the float (yellow) and glider SG660 (magenta) as they traverse from the high EKE region (yeardays
120–150) to the low EKE region (yeardays 170–200). Magenta text indicates yearday of the subset
of observations highlighted in purple. Background colored by eddy kinetic energy (EKE, m2s−2)
averaged over the Seaglider deployment period.

duced and distributed by Copernicus Marine Environment Monitoring Service (CMEMS;151

https://doi.org/10.48670/moi-00148). The altimetry product provides zonal and meridional152

geostrophic velocity anomalies (𝑢′𝑔 and 𝑣′𝑔, respectively) from which EKE is calculated as153

1
2

√︃
𝑢′2𝑔 + 𝑣′2𝑔 . Following the framework in Dove et al. (2021), we delineate a high EKE region (year-154

days 120–150; EKE> 0.124 m2 s−2) and a low EKE region (yeardays 170–200; EKE< 0.109 m2 s−2)155

within the SOGOS deployment.156

In our analysis of mixed layer properties along the glider trajectories, we utilize satellite-based157

estimates of photosynthetically active radiation (PAR) from Moderate Resolution Imaging Spectro-158

radiometer (MODIS) satellite data at 4 km resolution in 8-day composites (NASA/GSFC OBPG;159

Dataset ID: erdMH1par08day). To determine where gliders may be sampling across subme-160
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soscale fronts, we also use the finite-size Lyapunov exponent (FSLE) value-added L4 product from161

delayed-time merged Global Ocean Gridded Absolute Geostrophic Velocities (1/25° resolution;162

backward-in-time) provided by AVISO (DOI 10.24400/527896/a01-2022.002). FSLE values have163

been shown to correspond to localized regions of high strain rate; filaments of large negative FSLEs164

(computed backward-in-time) indicate lines of strong stretching that constrain fluid motion and165

transport around coherent structures, including along submesoscale fronts and around mesoscale166

eddies (d’Ovidio et al. 2004; Siegelman et al. 2020).167

3. Methods168

a. Random Forest Regression169

Random forest regression (RFR) is a supervised machine learning method that uses an ensemble170

(forest) of 𝑛 “weak” learners (decision trees) to make strong predictions (Breiman 2001). The RFR171

is given a set of observed predictor variables (“features”) as inputs, and a split condition based on172

a feature is determined at each branch of each decision tree. During training, each split criterion173

aims to best separate the target observations (here, of nitrate) into branches, or regions 𝑅 𝑗 , with174

the least variance. Each resulting region after splitting is assigned the average target value 𝑦̂𝑅 𝑗
.175

After training is complete, new input observations are sorted into their respective 𝑅 𝑗 ’s using the176

determined conditions, and then assigned 𝑦̂𝑅 𝑗
as the predicted target value. The decision at each177

node split in RFR is limited to a random subset of all features provided. As a result, the trees178

of RFR are less correlated than those in a family of “bagged” trees which consider all possible179

features at all nodes. RFR also uses “bootstrapping” , or subsampling data with replacement, so180

that each decision tree is trained on a slight variation of training data. By introducing randomness181

both in the node features considered and in the training data used for each decision tree, RFR is182

less prone to overfitting on data that are not randomly distributed in space and time (Stock 2022;183

Sharp et al. 2022b).184

RFR returns a measure for each feature called “feature importance” that reflects its predictive185

value. For each split where a given feature is used to determine the split criterion, the difference in186

the variance of the pre-split node compared to the two post-split nodes is calculated (and weighted187

by the number of samples in the pre-split node). These values are summed across all of the relevant188

splits in a given decision tree; the average of these sums across all trees represents the feature189
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importance of the given variable. The feature importances are computed for all variables used in190

the model, and are scaled relative to each other so that the sum of all of the final feature importances191

is 1. The feature importances are often screened during RFR development to help select a final set192

of features.193

Since nitrate variability is dependent on a wide range of physical, chemical, and biological194

factors, we explored the use of many possible “feature lists” (the set of predictor features provided195

for RFR) for our RFR. Predictive features such as CT, SA, 𝜎0, 𝜏, N2, O2, O2𝑠𝑎𝑡, as well as196

coordinate features such as latitude (lat), longitude (lon), time, and season (𝑠𝑧1 and 𝑠𝑧2) were197

considered in different versions of the model. 𝜏 is a measure of temperature and salinity variations,198

and acts as a tracer of water masses in the interior ocean. We applied a logarithmic transformation199

to the N2 data since its distribution is initially non-Gaussian. Seasonal information was encoded200

as two training variables, 𝑠𝑧1 and 𝑠𝑧2, following Sharp et al. (2022b):201

𝑠𝑧1 = cos(2𝜋 ∗ 𝑦𝑑/365),

𝑠𝑧2 = sin(2𝜋 ∗ 𝑦𝑑/365),
(1)

where 𝑦𝑑 refers to the yearday (days elapsed) referenced to January 1, 2019. The two variables202

together add a cyclical signal representing the time of year, or season. Of the feature lists considered,203

results from a selection of seven models with increasing complexity are presented in Section 4a.1.204

Each RFR was constructed using the scikit-learn Python RandomForestRegressor package with205

𝑛 = 1000 trees; a random one-third subset of the features were considered at each node (Breiman206

2001), with a minimum node sample size of 5 for a split to be considered.207

During RFR development, observations are separated into different datasets for training, vali-208

dation, and testing steps (Figure 2). We note that the observations within a single glider or float209

profile are highly correlated; since the individual profiles are the “independent” units here rather210

than the pointwise samples, we keep observations from vertical profiles together during data split-211

ting. Our RFR is trained and validated using GO-SHIP I06 bottle data and observations from six212

BGC-Argo floats (WMO: 5904469, 5904659, 5905368, 5905996, 5906031, 5906207; Figure 3a),213

which provided coverage of the Antarctic Southern Zone (ASZ) bounded by the Polar Front and214

Sea Ice Edge (Sauvé et al. 2023). The BGC-Argo float training observations cover a time period215

between May 8, 2017 and July 7, 2021, within approximately two years before and after the SO-216
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Fig. 2: Available ship, float, and glider observations are intercalibrated and quality controlled
before model development. The regional GO-SHIP and BGC-Argo data (excluding the SOGOS
float) are split into training and validation subsets, while the SOGOS float is withheld for testing.
The RFR outputs are nitrate profiles with high horizontal resolution reaching depths of ∼1000 m
along the Seaglider tracks.

GOS glider deployment (Figure 3b). The combined GO-SHIP and BGC-Argo dataset is split into217

the training (80%) and validation (20%) datasets as is common for machine learning workflows.218

After the RFR model is developed on the training data, we compute validation errors on this 20%219

withheld validation data (hereafter called the “simple holdout” validation dataset; Figure 4a) to220

give a first-order estimate of model performance.221

Using training observations that are spatiotemporally correlated can lead to validation error222

biases that obscure the true performance of the model when applied to data outside of the training223

dataset (Millard and Richardson 2015; Stock and Subramaniam 2022). We therefore rely on224

two other cross-validation techniques; the first is k-fold, in which RFR is validated iteratively on225

a random 1/𝑘th sample, or “fold” of the data (Figure 4b). Combining results across all folds226

produces a more representative validation error distribution for each version of the model (Kohavi227

1995). Additionally, we apply a variation of spatial leave-one-out (SLOO) cross-validation, which228

examines model performance by withholding all observations from one profiling float at a time229

(Figure 4c; e.g. Le Rest et al. (2014); Stock and Subramaniam (2022)).230

Typical machine learning workflows construct test datasets by removing a small (1–10%) random231

subset of the data available for training. However, our goal for testing in this particular use case232
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Fig. 3: (a) Location of BGC-Argo float profiles used for training and validation (WMO: 5904469,
5904659, 5905368, 5905996, 5906031, 5906207) and those used for testing (WMO: 5906030).
GO-SHIP station locations in black diamonds. Polar Front and Sea Ice Edge 2019 mean front
positions in dotted lines (Sauvé et al. 2023). (b) Time coverage by the BGC-Argo training floats;
“590” truncated from all float labels in legend.

Fig. 4: Schematics of (a) simple holdout validation with an 80% and 20% split, (b) k-fold cross-
validation, and (c) spatial leave-one-out (SLOO) cross-validation.
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is to get a final independent estimate of model error when applied onto the Seaglider tracks.233

Since the Seagliders sample close to the SOGOS float by experimental design, the entirety of the234

SOGOS float data (WMO 5906030) is reserved for testing. The training dataset consists of 11645235

observations, and the validation dataset has 2933 observations; the test dataset from the withheld236

SOGOS float has 3308 observations from 16 profiles. We emphasize that RFR applications in the237

geosciences should consider the specific goal of RFR when determining what data constitutes the238

training, validation, and test datasets.239

After selecting the optimal feature list during validation and testing, we train a final RFR model240

using the chosen feature list. At this stage, we combine the training, validation, and test datasets241

(representing all available GO-SHIP and BGC-Argo data) to serve as an expanded training dataset242

for the the best model performance. This RFR is applied to the Seaglider observations to estimate243

high-resolution nitrate fields.244

b. Alternative Machine Learning Models245

We compare RFR performance to that of two currently existing machine learning algorithms246

that have been applied for nutrient estimation. The CArbonate system and Nutrients concentration247

from hYdrological properties and Oxygen using a Neural-network version B (CANYON-B) uses248

Bayesian neural networks to predict nutrient variables (nitrate, phosphate, silicate) from a set249

of predictive features including T, S, p, O2, latitude, longitude, and/or day of the year (Bittig250

et al. 2018). The Empirical Seawater Property Estimation Routines (ESPER’s) are another set of251

predictive biogeochemical algorithms (Carter et al. 2021), and the ESPER-Mixed routine combines252

estimates from neural networks and locally interpolated regressions. CANYON-B and ESPER-253

Mixed are trained primarily on cruise data from different releases of the Global Data Analysis254

Project (Olsen et al. 2019). To produce nitrate estimates from ESPER-Mixed, we use input features255

of T, S, p, O2, latitude, and longitude; for CANYON-B, the same features plus time were considered.256

c. Mixed Layer Characterization at High Frequencies257

We analyze mixed layer properties of both physical and biogeochemical parameters over the258

course of the SOGOS deployment, which we divide into regions of high and low EKE (Section259

2). Along-track glider EKE is calculated by interpolating the satellite surface EKE to the average260
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location of each glider profile. Mixed layer depth (MLD) was calculated following Dove et al.261

(2021) as the depth at which density is first 0.05 kgm−3 greater than the density observed at 10 m.262

The absolute horizontal buoyancy gradient in the mixed layer (|∇ℎ𝑏 |) is estimated for each 𝑖th263

profile following |∇ℎ𝑏 |𝑖 = ( |𝑏𝑖+1 − 𝑏𝑖−1 |) (Δ𝑑)−1, where 𝑏𝑖 is the mean buoyancy in the mixed layer264

for the 𝑖th profile and Δ𝑑 is the horizontal distance between profiles at indices 𝑖 − 1 and 𝑖 + 1.265

Overall, ∇ℎ𝑏 is an underestimate of the strength of the fronts because the gliders do not always266

sample these features perpendicularly (Thompson et al. 2016). However, we expect a few outlying,267

large ∇ℎ𝑏 values, which can occur when the depth-averaged current causes the glider separation268

Δ𝑑 to be small due to the surfacing position being close to the dive position. We choose not to269

account for the impact of the depth-averaged current in this analysis.270

The mixed layer mean nitrate (𝑁𝑀𝐿 , in µmolkg−1) represents the integrated nitrate content in271

the mixed layer, normalized by the thickness of the mixed layer (ℎ𝑀𝐿 , in m):272

𝑁𝑀𝐿 =
1

ℎ𝑀𝐿

∫ 0

−ℎ𝑀𝐿

[𝑁𝑂−
3 ]𝜌d𝑧, (2)

where [𝑁𝑂−
3 ] (𝑧) is the RFR-nitrate prediction in µmolkg−1, and 𝜌(𝑧) is in-situ density in kgm−3.273

In practice, the integral is estimated using trapezoidal sums on the irregularly vertically spaced274

observations. We also analyze the difference in nitrate concentration across the base of the mixed275

layer (Δ𝑁𝑀𝐿), which is defined as 𝑁𝑀𝐿 minus the mean nitrate concentration 20 m below the MLD276

(calculated over the depth range 10–30 m below the MLD). Horizontal variance of the mixed layer277

nitrate (𝑠2
𝐻,𝑁𝑂3

, in µmol2 kg−2) is calculated as the variance in 𝑁𝑀𝐿 when binned into 10-profile (∼2278

day) windows that overlap by 2 profiles (∼10 hours). To relate the nitrate time series to evidence of279

biological production, we also track the mixed layer mean optical backscatter at 470 nm (𝑏𝑏𝑝470),280

which is calculated following the same method in Equation 2). Backscatter measures the scattering281

of light by particles present in the water, and serves as a proxy for particulate organic carbon.282

d. Wavelet Analysis for Timescales of Variability283

We apply wavelet analysis to the RFR glider estimates to detect important timescales of nitrate284

variability in the mixed layer. A wavelet represents a local function in the frequency-time space,285

centered around 0, with a particular frequency distribution. Using wavelet analysis to return time-286
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localized information (over spectral analysis) is particularly useful when analyzing climate data287

because of non-stationarity and persistence in the time series (Grinsted et al. 2004; Torrence and288

Compo 1998). Here, we apply a version of a continuous wavelet transform (CWT) called the289

weighted-wavelet Z transform (WWZ), which decomposes the time series into dilated and shifted290

transformations of a complex Morlet wavelet (a sinusoidal wave with Gaussian decay). In essence,291

WWZ returns information on how closely a signal resembles the wavelet defined at a given time292

and frequency (Foster 1996). WWZ is suitable for irregularly spaced data since it does not rely293

on interpolation, which can misrepresent the true spectral content of the time series (Torrence and294

Compo 1998). All signal processing is performed using the Python package Pyleoclim designed295

for use on climate time series (Khider et al. 2022). Significance testing is done by comparison to296

the CWTs of 1000 iterations of the theoretical red noise, first order autoregressive process AR(1)297

benchmark (Torrence and Compo 1998).298

4. Results299

a. Random Forest Regression300

1) RFR Training301

During RFR training, we explore the performance of different feature lists by evaluating the302

feature importance and validation errors for each model version; results from seven example models303

are presented here. Model A represents the simplest RFR feature list, using only two variables, 𝜏304

and 𝜎0, while models D–G incorporate additional spatiotemporal information (Figure 5a). RFR305

feature importance is one measure of the predictive capability of a given predictor variable (Methods306

Section 3a), but the limitations of using feature importances alone for final feature selection has307

been noted previously (e.g. Strobl et al. (2007)). Whereas SA, p, and O2 consistently appear to308

have strong predictive capability in our RFR, other spatial and temporal features (like latitude,309

longitude, and time) return low feature importance (Figure 5b). However, when we evaluate the310

models on validation data, these spatiotemporal features improve the performance of the RFR as311

indicated by reductions in the error bias, median absolute error (MAE), and interquartile range of312

the absolute errors (IQR-AE) (Table 1; Figure 6). To give an example of how feature importance313

can misrepresent predictive power, we consider a feature (e.g. latitude) that may be primarily314

useful toward the top of a decision tree for an initial splitting of the data, but less useful than other315
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features further down in the tree. Given how feature importances are calculated, latitude would316

then return low feature importance despite providing a critical “pre-sorting” of the data that allows317

the high feature importance predictors to be effective in the rest of the tree. We emphasize that318

without also evaluating validation error distributions of the different models, using only feature319

importance could lead to sub-optimal feature selection.320

Fig. 5: (a) Feature lists for models A through F, showing which variables are considered during
RFR training for each version of the model. (b) Feature importances [unitless], as described in
Section 3a, for models B, C, D and G. The sum of all feature importances for a given model is one.

2) RFR Validation321

We next use simple holdout validation, which computes prediction errors on 20% of withheld322

GO-SHIP and BGC-Argo data, to assess suitability of the feature lists (Figure 4a). This holdout323

validation is a common first-order approach to assessing performance from different feature lists.324

Replacing 𝜏 and 𝜎0 in model A with CT and SA, and adding biogeochemical information (O2) with325

spatiotemporal coordinates (latitude, longitude, yearday, and season) in model D all contribute326

to decreasing the simple holdout validation MAE (± IQR-AE) from 0.309 µmolkg−1 (± 0.461)327

to 0.142 µmolkg−1 (± 0.205) (Table 1). If a particular feature can be calculated from the other328

variables in the feature list, its inclusion does not seem to improve performance. For example,329

adding O2𝑠𝑎𝑡 to a feature list that already has 𝑂2 as a predictor will yield nearly the same results.330

Likewise, the addition of N2 does not improve performance noticeably in model F over model D.331

This characteristic is likely because CT, SA, and p already encode much of the same information,332
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and/or because the variable is too noisy to be an effective predictor. From the simple holdout333

validation alone, the distinctions in performance between model D and G are unclear since the334

models have very similar MAE (± IQR-AE) values (0.146 (± 0.211) µmolkg−1 for model D and335

0.142 (± 0.205) µmolkg−1 for model G; Table 1).336

Model Validation MAE Validation IQR-AE Validation Median Bias

A 0.3089 0.4605 -0.0554
B 0.2669 0.3686 -0.0241
C 0.2431 0.3533 -0.0141
D 0.1455 0.2106 -0.0154
E 0.1459 0.2140 -0.0172
F 0.1525 0.2245 -0.0149
G 0.1422 0.2047 -0.0171

Table 1: Simple holdout (20%) validation errors for models A through G, whose feature lists
are given in Figure 5. Median absolute error (MAE), interquartile range of the absolute errors
(IQR-AE), and median bias are reported in µmolkg−1.

3) RFR Cross-Validation337

To better distinguish the feature list with the best predictive performance and lowest overfitting338

tendency, we use both k-fold cross-validation and spatial leave-one-out (SLOO) cross-validation.339

During k-fold cross-validation, we generate a larger set of validation errors to differentiate perfor-340

mance between models. For 𝑘=10 in our case, ten RFR models are trained, each time training on341

observations from nine folds and withholding one fold for validation (Figure 4b). The distribution342

of 10 k-fold MAEs for each model reflects similar results to those from simple holdout validation343

above, where models D–G significantly improve performance over models A–C (Table 2; Figure344

6a). For models D–G, the validation errors across folds have a small spread despite being trained345

on shuffled data; the consistent performance suggests that the model is robust and generalizes well346

to new data.347

We next combine the k-fold cross-validation errors across folds to estimate a probability density348

(Gaussian kernel density estimate; KDE) for each of the models (Figure 7a). All models have349

slightly negative bias (center of curves in Figure 7a) but the bias is significantly improved for350

models D–G (∼0.02 µmolkg−1), seemingly due to the inclusion of latitude, longitude, and yearday351
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Model K-Fold MAE K-Fold IQR-AE K-Fold Median Bias

A 0.2857 0.4419 -0.0531
B 0.2683 0.3837 -0.0351
C 0.2463 0.3474 -0.0389
D 0.1419 0.2118 -0.0190
E 0.1456 0.2144 -0.0173
F 0.1477 0.2207 -0.0201
G 0.1380 0.2023 -0.0152

Table 2: K-fold cross-validation errors for models A through G (combined across all folds), whose
feature lists are given in Figure 5. Median absolute error (MAE), interquartile range of the absolute
errors (IQR-AE), and median bias are reported in µmolkg−1.

Fig. 6: (a) Spread of aggregated k-fold cross-validation MAEs (µmolkg−1) across models A–G.
(b) Cross-validation errors in 100-m depth bins for models D (blue) and G (purple). Float nitrate
measurement uncertainty of ± 0.5 µmolkg−1 in dashed red lines (Maurer et al. 2021).

features (Table 2). The peak of the KDEs for models D–G suggest that the inclusion of seasonal352

variables 𝑠𝑧1 and 𝑠𝑧2 as predictors in model G leads to the best performance out of the four353

models. From aggregating validation errors into 100 m bins to examine the depth-dependence of354

performance, we find that the improvements in model G over model D are mostly in the upper355

200 m near the surface (Figure 6b).356

We conclude validation by using a spatial leave-one-out (SLOO) cross-validation technique on357

models D and G, which is a useful technique in geoscience contexts for assessing the impact of spa-358

tiotemporal correlations in the observations used for training (Stock 2022; Stock and Subramaniam359
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Fig. 7: (a) Gaussian kernel density estimate (KDE) for k-fold cross-validation errors from models
A–G. The probability density is most closely centered around 0 for model G. Float nitrate mea-
surement uncertainty of ± 0.5 µmolkg−1 in dashed red lines (Maurer et al. 2021). (b) Zoomed in
view highlighting the peaks of the KDE’s for models D–G.

Fig. 8: Spatial leave-one-out validation errors on six floats. Colored dots denote the validation
MAE’s for each withheld float WMO; ”590” truncated from all float labels in legend. Float nitrate
measurement uncertainty of ± 0.5 µmolkg−1 in dashed red line (Maurer et al. 2021)

2022). BGC-Argo training floats were selected due to their temporal and spatial proximity to the360

SOGOS float and gliders, but these training observations are taken at different points in time and in361

slightly different regions (Figure 3). Here, we iteratively leave out one float to serve as a validation362

dataset, training on the remaining five floats (Figure 4c). The six SLOO models return an average363

validation MAE (± IQR-AE) of 0.406 µmolkg−1 (± 0.148) for model D, and 0.379 µmolkg−1
364

(± 0.192) for model G. The SLOO validation errors on a single float tend to be higher than those365

from simple holdout validation, but in general model G returns lower validation errors than model366

D for five of the six floats. Only the validation errors on float WMO 59055996 increase slightly367

from model D to model G. We use training observations from this particular float that are taken368

farther west than the SOGOS deployment (10°E versus 30°E) since the overall tracer distributions369

appear to match those of the SOGOS float. However, float WMO 5905996 is near the Polar Front370
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and spatially separated from many of the other training floats in the east, such that the training371

data may be less representative of the float WMO 5905996 observations withheld from validation.372

During early model development, floats that returned especially poor SLOO cross-validation errors373

were removed from the training data before the final set of BGC-Argo floats was chosen. From374

both k-fold and SLOO cross-validation results, we select feature list G for the next steps of RFR375

development.376

4) RFR Testing377

We test our RFR (model G) using the withheld SOGOS float data (Figure 9a), and find a test378

validation MAE (± IQR-AE) of 0.203 (± 0.290) µmolkg−1, corresponding to a 0.22% relative379

error and mean bias of +0.082 µmolkg−1. When the float test MAE is computed only over the380

period of Seaglider deployment (yeardays 120–200), the MAE is 0.345 µmolkg−1 (± 0.428),381

which is slightly higher than that calculated over the larger SOGOS float dataset extending into382

2020 (Figure 9c). This difference may be due to the fact that the SOGOS deployment begins in one383

of the most energetic regions of the global oceans. The pattern of overestimation reaches yearday384

∼250 (end of August), which is around the end of austral winter. Even so, 84% of all test MAEs385

are ≤ 0.5 µmolkg−1 (float nitrate measurement uncertainty for BGC-Argo; Maurer et al. (2021))386

and 95% of test MAEs are ≤ 0.732 µmolkg−1.387

The RFR test errors exhibit significant variability both in time (horizontal axis) and along depth388

(vertical axis in Figure 9c). Under the mixed layer, the RFR test errors show small but persistent389

overestimation. These positive errors in the interior may result from the fact that the larger390

BGC-Argo training dataset covers a slightly wider range of nitrate values than the SOGOS float391

observations alone, particularly at lower concentrations. The narrower range of nitrate observed392

by the SOGOS float is not unexpected, given that the SOGOS float samples during austral fall and393

winter, while the broader BGC-Argo training dataset covers the annual cycle. All of the BGC-Argo394

and GO-SHIP data used for training were from the same region in the ASZ that the SOGOS395

float samples, so we expect that the same water masses were observed in the training/validation396

and test data (Figure 3). Above the MLD, there are different patterns of alternating over- and397

underestimaton that may be related to nitrate anomalies associated with mesoscale structures.398
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Fig. 9: Nitrate (µmolkg−1) (a) observed by the SOGOS float and (b) predicted by RFR model G for
the upper 1000 dbar. (c) Nitrate prediction error (predicted − observed; µmolkg−1) over the same
pressure range. MLD in magenta lines. Horizontal time axis in month ’year format; corresponding
yearday (relative to Jan 2019) in grey.

For a final evaluation of our RFR model performance, we compare the output to predictions made399

from two other robust machine learning algorithms, CANYON-B and ESPER-Mixed (Methods400

Section 3b; Bittig et al. (2018); Carter et al. (2021)). The two algorithms perform similarly with401

excellent performance under 200 m (Figure 10b-c). Strong performance of both models in the402

ocean interior underscores the utility of machine learning methods for tracer estimation. However,403

within the mixed layer, both CANYON-B and ESPER-Mixed outputs persistently and substantially404

underestimate nitrate (Figure 10b-d). The underestimation may be due to temporal biases where405

the cruise observations used to train CANYON-B and ESPER-Mixed are heavily biased towards406

austral summer (Bittig et al. 2018). Mixed layer nitrate is expected to be lower during these407

months when biological utilization is most active. In contrast, our observations are later in austral408

fall when the mixed layer deepens and productivity decreases to low background levels (Su et al.409
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Fig. 10: Relative prediction errors [(predicted-observed)/observed] for SOGOS test float data in the
upper 500 dbar using (a) RFR, (b) CANYON-B, and (c) ESPER-Mixed. Results not shown between
500 dbar and 1000 dbar are similar to those under ∼300 dbar. MLD in magenta lines. Horizontal
time axis in month ’year format; corresponding yearday (relative to Jan 2019) in grey. (d) Test
errors (µmolkg−1) in 100-m depth bins for RFR (purple), CANYON-B (teal), ESPER-Mixed (tan).

(2022)). CANYON-B, which considers day of year, returns better predictions in the upper 200 m410

than ESPER-B, which does not use time as a predictor. This increased performance in the upper411

ocean of CANYON-B relative to ESPER-B mirrors how the addition of seasonal variables to our412

RFR model G improved performance over model D (Figure 6). Descriptions of the algorithms in413

Carter et al. (2021) and Bittig et al. (2018) mention that the seasonality and exact values of their414

models’ output should be taken with caution in the upper ocean. The relative success of our RFR415

method in estimating mixed layer distributions suggest that targeted regional models may be able416

to recover useful information about the upper ocean that is lost in globally trained models.417

Using feature list G, we train a final RFR model using all the available GO-SHIP and BGC-Argo418

data, including those from the SOGOS float. This approach utilizes all the observations possible419

to yield the best predictive power, but only after cross-validation is complete. Once the final RFR420

has been trained, we supply high-frequency Seaglider observations as inputs to the model and421
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generate novel nitrate distributions at high horizontal resolution along the glider tracks (Figures422

11b, 12). The gliders have average horizontal distance of ∼1.5 km between profiles (downcast423

and upcast are separate profiles), whereas the BGC-Argo float profiles are separated by ∼70–80424

km. Application of RFR therefore results in a ∼50-fold increase in horizontal resolution for the425

nitrate distributions in this region (Figure 11b). Though the float profiles are sparse relative to426

those from the gliders, the SOGOS float’s sampling frequency of 5 days is already faster than the427

typical profiling period of 10 days for most Argo floats. Scientific questions that can be addressed428

using the global BGC-Argo array may be limited by resolution, but an RFR approach can extend429

rich regional datasets from floats by leveraging the spatiotemporal resolution offered by different430

platforms.431

Fig. 11: Nitrate (µmolkg−1) (a) observed by the SOGOS float over a period of ∼30 days (6 profiles)
and (b) predicted by RFR model G for glider SG660 over the same time period (428 profiles).
Horizontal time axis in day-month format for 2019; corresponding yearday (relative to Jan 2019)
in grey.

b. Mixed Layer Variability from High-Frequency RFR Estimates432

The RFR-derived nitrate distributions enable analysis of mixed layer variability at much higher433

temporal resolution than previously possible in this region. High-frequency variability in the434

nitrate distributions is most evident below the base of the mixed layer (Figure 12). We note that CT435
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Fig. 12: (a) Potential density referenced to surface (𝜎0), (b) spice (𝜏), and (c) nitrate (µmolkg−1)
sections from SG659 plotted in time-pressure space; (d) nitrate plotted in time-density space. (d-f)
Same variables as left, but for SG660. Dashed red lines bound the high EKE region (yeardays
120–150) and dashed black lines the low EKE region (yeardays 170-200). Horizontal time axis
in month-day format for 2019; corresponding yearday (relative to Jan 01 2019) in grey. Sections
showing the full nitrate prediction to 1000 m are given in Supplementary Information.

and SA are impacted by atmospheric surface forcing (including heating, cooling, evaporation, and436

precipitation) that typically occurs at larger scales, such that small-scale variability generated by437

stirring tends to be reduced in the mixed layer relative to the interior. Since RFR uses both CT and438

SA for nitrate prediction, these parameters may contribute to similar erasure of rapid variability439

in the mixed layer nitrate. Although the dampening of high-frequency variability in the mixed440

layer could be partially due to artifacts of the RFR model, biological drawdown of nitrate near the441

surface would also tend to decrease nitrate variability at short timescales when rapid injection is442

met with utilization.443

We focus our next analysis on processes affecting the mixed layer, using various time series to444

quantify the strength and timing of nutrient injection into the upper ocean. Nutrient supply into the445

mixed layer can be mediated both by uplifting of isopycnals and changing of MLD, or direct tracer446
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transport along isopycnals across the base of the mixed layer (Freilich and Mahadevan 2019). To447

interpret relationships between the nutrient and physical dynamics of this region, we divide the448

SOGOS deployment into two regions of different EKE (Section 2). The three SOGOS platforms449

observe a high EKE region by the Southwest Indian Ridge (yeardays 120-150) before passing450

into a low EKE region downstream (yeardays 170–200; Figures 1a, 13a). Previous physical451

characterization of this region in Dove et al. (2021) suggests that the high EKE region is rich452

in submesoscale instabilities that affect vertical stratification at the base of the mixed layer and453

promote greater biogeochemical exchange between the mixed layer and ocean interior.454

We use changes in the RFR-derived mean mixed layer nitrate 𝑁𝑀𝐿 as a proxy for deep, nutrient-455

rich waters reaching the upper ocean. Any motions that stir nitrate-rich filaments into the mixed456

layer would also deliver other remineralized nutrients. Since large areas of the Southern Ocean457

are limited by iron, local decreases in 𝑁𝑀𝐿 may be attributed to additional biological utilization458

spurred by iron availability. Values for 𝑁𝑀𝐿 tend to be lower in the high EKE region (yeardays459

120–150) than in the low EKE region (yeardays 170–200; Figure 13d), which we associate with460

higher levels of productivity using satellite light availability (PAR) and optical backscatter (𝑏𝑏𝑝470;461

Figure 13g,h). The decrease in 𝑁𝑀𝐿 coincides with an increase in optical backscatter, indicating462

more particulate organic carbon in the upper ocean. At this point in austral fall, summer blooms463

have already utilized available nutrients in the mixed layer and light availability is decreasing, so464

background biological activity is relatively low (Su et al. 2022). Still, additional nutrient input into465

the mixed layer can spur productivity, although full bloom initiation could take weeks or occur466

only weakly. There are occasionally significant differences in the 𝑁𝑀𝐿 observed by the different467

platforms (e.g. yeardays 150–165; Figure 13d), which can be partially attributed to periods of468

increased spatial separation between the gliders and SOGOS float (Figure 1b).469

For other characteristics like MLD and the difference in nitrate across the base of the mixed layer470

(Δ𝑁𝑀𝐿), the time series from the three SOGOS platforms reflect that the SOGOS float misses the471

rapid variability captured by gliders (Figure 13b,e). The Δ𝑁𝑀𝐿 calculated from the SOGOS float472

observations are consistently small within the high EKE region (yeardays 120–150). In contrast,473

the Δ𝑁𝑀𝐿 estimated from RFR glider nitrate changes rapidly and reaches values twice as large as474

those from the float (Figure 13e). Though long-term trends from both platforms may be similar, the475

long profiling period of the BGC-Argo obscures significant patterns evident in the glider nutrient476
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Fig. 13: For SG659 (teal), SG660 (magenta) and SOGOS float (yellow diamonds, when available),
(a) along-track eddy kinetic energy (EKE); (b) mixed layer depth (MLD); (c) horizontal buoyancy
gradient (∇ℎ𝑏) in the mixed layer; (d) mixed layer mean nitrate concentration (𝑁𝑀𝐿); (e) difference
in nitrate concentration across the base of the mixed layer (Δ𝑁𝑀𝐿); (f) horizontal variance in mean
mixed layer nitrate (𝑠2

𝐻,𝑁𝑂3
) for 10-profile window (∼2 days); (g) logarithm of mixed layer mean

backscatter at 470 nm (𝑏𝑏𝑝470), (h) photosynthetically active radiation (PAR). Horizontal time axis
in day-month format for 2019; corresponding yearday (relative to Jan 01 2019) in grey. Dashed
red lines bound the high EKE region (yeardays 120–150) and dashed black lines bound the low
EKE region (yeardays 170-200). Panels d–f use the RFR-predicted nitrate fields while the rest are
observed quantities.
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signals. We comment further on the platforms’ distinct sampling strategies and the respective477

benefits in Section 5.478

Strong fluctuations in the mixed layer nitrate signals coincide with signs of increased physical479

stirring at small scales. When the gliders sample the high EKE region (yeardays 120–150), they480

observe intermittent shoaling of the mixed layer (Figure 13b) as well as enhanced horizontal481

buoyancy gradients that indicate submesoscale structures (Figure 13c; previously explored in Dove482

et al. (2021)). Analogously, we use the RFR glider nitrate estimates to demonstrate that the483

high EKE region frequently exhibits higher horizontal variance in mixed layer nitrate (𝑠2
𝐻,𝑁𝑂3

)484

as compared to the low EKE region (Figure 13e). Higher values of 𝑠2
𝐻,𝑁𝑂3

in the high EKE485

region suggest that the RFR glider estimates are resolving filaments of water masses with distinct486

nutrient characteristics, sourced from different regions, as they are stirred at mesoscales and487

submesoscales. The timing of elevated 𝑠2
𝐻,𝑁𝑂3

coincides with the sharp gradients in MLD and488

intensified lateral buoyancy gradients observed by the gliders (e.g. yeardays 125, 131, 137, 148489

for SG660). Altogether, characteristics of the RFR-derived nitrate over time appear consistent490

with enhanced submesoscale upwelling of nitrate through the steepening of density gradients and491

weakening of stratification at the base of the mixed layer.492

c. Timescales of Nutrient Variability493

We next characterize the important temporal scales at which upper ocean nutrient content varies494

by applying wavelet analysis; the high-frequency RFR nitrate estimates allow us to assess variability495

at a more comprehensive range of periods (from ∼5 hours to ∼50 days). Along-isopycnal nitrate496

and spice are tracked on a range of density surfaces that are generally within the nutricline, with497

average depths of the corresponding isopycnals (𝑑) ranging from ∼170–400 m for SG660 (Table498

3; Figure 12h). Applying continuous wavelet transform (CWT) on the along-isopycnal nitrate and499

spice signals shows which frequencies of variability are dominant in each signal, and at what point500

in the deployment; higher CWT amplitudes indicate enhanced variability at that given frequency501

and time.502

The along-isopycnal nitrate CWTs reflect significant frequencies of nitrate variability that are both503

in the mesoscale and submeoscale range. We caution that significance should only be interpreted504

outside of the shaded “cone of influence” (COI). This excluded region is a result of the finite nature505
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𝜎0 𝑑

27.30 174.63
27.40 223.68
27.50 296.80
27.60 396.92

Table 3: Average depth (𝑑) of analyzing isopycnal (𝜎0) for SG660

of the time series; wavelets defined at periods of 𝑋 days can only be considered significant 𝑋 days506

after the start or from the end of deployment. At mesoscale periods ≥ 20 days, there appear to be507

significant bands of high CWT amplitudes in both nitrate and spice during yeardays 140–150 when508

the glider samples the eddy-rich, high EKE region (Figure 14a,b). These patterns of enhanced509

high-frequency variability extend down to the base of the nutricline at ∼400 m (Figure 14).510

At submesoscale periods (∼ 0.2 days to ∼2 days), the CWT plots show several short-lived events511

(e.g. yeardays 130, 137, 150) during which both nitrate and spice variability are strongly enhanced512

in the interior between 200 m and 400 m depths. Increased CWT amplitudes at submesoscales513

continue to occur sporadically, although weakly, in the low EKE region after yearday 170 along the514

shallow isopycnals 𝑑 ≤ 223 m (Figure 14). High CWT amplitudes at submesoscales tend to occur515

where there are sharp gradients in MLD and shoaling of the analyzing isopycnal (yeardays 130,516

137), presumably due to eddy activity (Figure 15a–c). During these short events, the glider appears517

to sample across filaments of enhanced FSLE (Figure 15d–f), which are typically found around518

submesoscale fronts or between mesoscale eddies (Siegelman et al. 2020). Not all times at which519

the glider appears to sample strong MLD gradients are associated with enhanced submesoscale520

variability in the nitrate CWTs (e.g. yeardays 124, 147, Figure 15a–c).521

Our wavelet analysis suggests that nitrate variability is often dominated by mesoscale modulation522

of water masses at periods between ∼20 to 50 days. However, especially in the high EKE region,523

rapid changes in along-isopycnal nitrate appear to occur in intermittent, short-lived events at524

timescales associated with submesoscale stirring (∼0.5 to 2 days). Although not within the scope525

of this paper, a different method using wavelet transform coherence could be used to measure526

the correlation between CWTs, i.e. the shared variability of two signals (Foster 1996). This527

type of analysis would explore how physical and biological time series co-vary, and what mixing528

27



Fig. 14: (a-d) CWTs of RFR nitrate estimates from SG660 along four analyzing isopycnals (3).
(e-h) CWTs of observed spice from SG660 along the same isopycnals. Dark grey lines are 95%
significance contours. Dashed red lines bound the high EKE region (yeardays 120–150) and dashed
black lines the low EKE region (yeardays 170-200). Inertial period at this latitude is ∼0.643 days,
or 15.4 hours.

mechanisms would lead to strong or weak covariance at different frequencies and times. Continued529

progress in nutrient mapping at higher resolutions, here achieved by RFR, will invite new methods530

of quantifying tracer variability at a comprehensive range of scales.531
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Fig. 15: (a, b) Nitrate and spice CWTs from SG660 for analyzing isopycnal 𝜎0= 27.5, which is
on average at 𝑑=296 m. Dark grey lines are 95% significance contours. Cone of influence (COI)
plotted in dashed black; results insignificant within white shaded region. (c) Glider SG660 nitrate
section with analyzing isopycnal 𝜎0=27.4 in red dots; MLD in black dots. Dotted magenta lines in
panels a–c indicate the yeardays represented in panels d–f. (d-f) Surface FSLE at daily resolution,
with SG660 profile locations in magenta dots for a given yearday.

5. Discussion and Conclusions532

Our motivation for developing a regional random forest regression (RFR) for nutrient prediction533

was to bridge observational gaps at short timescales and extend insights into Southern Ocean nutri-534

ent variability. We train the RFR model on nutrient observations from regional BGC-Argo floats,535

then apply the RFR on inputs from rapid-sampling Seagliders to generate upscaled nitrate distri-536

butions. Using the observation-based RFR estimates, we find enhanced high-frequency variability537

in mixed layer nitrate in a turbulent region with enhanced submesoscale stirring. Quantifying538

the dominant timescales of variability over time with wavelet analysis suggests that nutrients are539

sporadically injected into the upper ocean in small-scale filamentary structures during short-lived540
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events; such rapid variability is only evident in the RFR glider estimates and not in the original541

BGC-Argo float observations.542

The multi-platform SOGOS experimental design is well-suited for RFR because each of the543

observing platforms has distinct advantages. The SOGOS float measures an additional variable544

(nitrate), while the Seagliders measure at higher resolution (2 profiles every 4–6 hours, instead of 1545

profile every 5 days). By deriving high-frequency nitrate estimates along the Seaglider tracks with546

RFR, we can explore what nutrient information is missed by the SOGOS float alone. Even within547

the low EKE region (yeardays 170–200) when the gliders and float tend to sample close together,548

the float observes a much narrower range of nitrate values than the gliders (Figure 11, Figure 16a).549

The mean value of the float distribution is higher than that of the glider distribution, even when550

accounting for RFR prediction errors. The floats’ inability to capture small-scale dynamics may551

therefore bias long-term float averages used in other applications.552

Fig. 16: (a) Distributions of mean layer mixed nitrate (𝑁𝑀𝐿; ) from the RFR glider estimates
(purple) and and the SOGOS float observations (grey) when the platforms sample close to another
in the low EKE region (yeardays 170–200). Means of the distributions are shown by solid lines;
dashed purple lines indicate the bounds of uncertainty using the RFR test MAE calculated for the
low EKE region. (b) Distributions of 𝑁𝑀𝐿 from the RFR glider estimates in the the high (red)
versus low EKE regions (blue); means of the distributions in solid lines. Float observations (grey)
from both the high and low EKE regions are grouped.

Likewise, differentiating the nutrient distributions between the high and low EKE regions would553

be impossible based on the sparse SOGOS float observations alone. On the other hand, the RFR554

glider nitrate estimates better resolve the two distinct distributions (Figure 16b), and return a555
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statistically significant difference between upper ocean nitrate in the high EKE versus low EKE556

regions (Welch t-test statistic: -45.2, p-value ≈ 0, dof=1357). The SOGOS float actually sampled557

at double the resolution of the typical Argo float (∼5 days rather than ∼10 days), so the difference558

in high-frequency coverage would be even greater in comparison to standard Argo floats. Given559

in-situ sampling limitations, approaches like RFR can transfer the benefits of rapid sampling to560

variables that are not represented in the gliders’ sensor array. We encourage future observational561

deployments to consider utilizing heterogeneous arrays of instruments, especially where machine562

learning can be applied to fill in missing information (e.g. Salam and Hsieh (2023); Salcedo-Sanz563

et al. (2020); Renosh et al. (2023); Lermusiaux et al. (2017); Chai et al. (2020)).564

Among machine learning approaches, RFR is a relatively simple algorithm that can be trained on565

regional datasets too small for deep learning. RFR has been successfully applied to a range of cases566

in oceanography (e.g. Sharp et al. (2022a); Callens et al. (2020); Tong et al. (2019)), including for567

oxygen prediction in the Southern Ocean using BGC-Argo float data (Giglio et al. (2018)). Further-568

more, many oceanographic applications highlight RFR as a useful tool for geospatial observations569

because of its reduced overfitting tendency and ability to handle non-linear relationships between570

variables (Zhou et al. 2023; Sharp et al. 2022b). Deep learning methods are not necessarily better571

than simpler algorithms for data that are non-uniformly distributed; where multiple algorithms572

produce similar regional predictions, simple learners can offer greater stability and interpretability573

(Domingos 2012).574

RFR, like all other machine learning models, is still sensitive to the representativeness of training575

data and is subject to certain performance limitations (Millard and Richardson 2015). The nature of576

in-situ sampling with ocean profilers like floats and gliders poses a challenge for model development577

because the training observations are not randomly distributed throughout the region and time578

period of interest. Although we select training observations from BGC-Argo floats that appear579

to sample tracer characteristics of the same ASZ region in which the SOGOS experiment takes580

place (Figure 3), information from these six floats is not sufficient to represent the full range of581

tracer relationships in this region, nor how they change over time. Another caveat to RFR is that582

we choose a feature list for model training based on the assumption that nitrate content correlates583

strongly with given predictive variables like CT, SA, or O2, but this correlation may be weaker584

in different parts of the Southern Ocean (Ishizu and Richards 2013). The same submesoscale585

31



processes we attempt to diagnose using the high-resolution RFR nitrate may already be responsible586

for greater decoupling between nitrate and other variables in-situ (Mahadevan 2016; Omand and587

Mahadevan 2013). Despite these limitations, our regional RFR produces remarkably low test588

prediction errors in one of the most turbulent areas of the global oceans. The success of our RFR589

approach highlights the potential for machine learning to improve mapping of ocean fields.590

Machine learning and artificial intelligence have been increasingly applied for oceanographic591

applications (Sonnewald et al. 2021; Sun et al. 2022), including improving satellite altimetry592

products (Martin et al. 2023; Cohen 2019; Fan et al. 2021), estimating biogeochemical distributions593

(Bittig et al. 2018; Carter et al. 2021), and identifying eddy activity (Ashkezari et al. 2016; Zhang594

et al. 2023), among many others. Future application of RFR or other machine learning approaches595

on other multi-platform datasets can be used to address a wide range of questions depending on596

what different types of measurements can be synthesized (Salam and Hsieh 2023; Salcedo-Sanz597

et al. 2020). Here, our observation-based RFR approach to nitrate prediction in the Southern Ocean598

extends previous simulation and theory on high-frequency nutrient dynamics. Given increasing599

observational coverage of the global oceans by Argo floats and other drifting profilers, RFR600

presents opportunities to derive additional value from these sometimes incomplete biogeochemical601

datasets. Such efforts to bridge observational gaps using new ocean technologies and machine602

learning techniques will expand our knowledge of global biogeochemical cycles at previously603

inaccessible scales.604
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APPENDIX628

Data Quality Control and Processing629

a. Seaglider Processing630

The glider data was reprocessed into an L2 xarray Dataset (courtesy of Geoff Shilling and631

Craig Lee, Applied Physics Lab) which separates the data into glider profiles and averages the632
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raw observations in 1 m depth intervals from 0 to 1000 m. We use the despiked L3 product,633

which interpolates observations vertically (gaps ≤ 50m in depth) removes outliers more than 2634

standard deviations from the running mean. With quality-controlled BGC-Argo and GO-SHIP635

data for reference, additive corrections for CT and SA were determined by finding the closest glider636

matches to the quality-controlled Argo measurements, which are assumed to be true reference637

values. A threshold of ∼5 m depth difference and distance of ∼10 km were used as an upper638

threshold to filter matches, consistent with float and bottle match thresholds for standard BGC-639

Argo quality control (Maurer et al. 2021). The difference dT and dS for each observation pair640

was calculated to represent the glider offsets (glider minus float), and had statistically insignificant641

slopes along depth. A single additive correction was made for all profiles from one glider. For642

temperature, 0.0629°C was added to all profiles from SG659, and 0.030°C added to those from643

SG660. For salinity, SG659 had negligible corrections while 0.18 psu was subtracted from SG660644

measurements. These corrections are comparable to those performed on the same dataset from645

Dove et al. (2021).646

We also correct oxygen since oxygen optodes on the rapidly sampling gliders are prone to a time647

response lag. As the gliders ascend and descend, a small boundary layer develops around the head of648

the optode. The oxygen measurement therefore lags behind the true oxygen concentration, creating649

a tendency for gliders to slightly overestimate oxygen on a downward cast, and to underestimate650

on an upward cast. Methods for optode lag corrections on Argo floats (code courtesy of Yuichiro651

Takeshita, Stoer et al. (2023)) were adapted to the glider optodes. For the standard foil Aanderaa652

optodes on the gliders, a boundary layer thickness of ∼40 µm was chosen, while the time response653

is calculated internally following Bittig et al. (2018). The oxygen sensor is also corrected for an654

offset using a gain correction (Johnson et al. 2015). For SG659, we calculated the corrected oxygen655

as O2𝑐𝑜𝑟𝑟 = 1.126(O2) −3.256; for SG660, O2𝑐𝑜𝑟𝑟 = 1.0866(O2) −0.146.656

b. GO-SHIP Processing657

Bottle data from the GO-SHIP line I06 in 2019 were accessed through the CLIVAR and Car-658

bon Hydrographic Data Office (CCHDO; https://cchdo.ucsd.edu/cruise/325020190403). Quality659

control of the bottle data is performed using the provided flags (2: no problems noted).660
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c. BGC-Argo Processing661

Delayed-mode BGC-Argo data from seven floats (WMO: 5904469, 5904659, 5905368, 5905996,662

5906030, 5906031, 5906207) are downloaded from an Argo Global Data Assembly Center (GDAC)663

using the Python BGC-Argo Toolbox (https://github.com/go-bgc/workshop-python). Quality con-664

trol is performed using standard BGC-Argo QC flags (1: good data, 2: probably good data, 8:665

interpolated value).666
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