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ABSTRACT: Nutrient cycling in the ocean is mediated by physical mixing processes that span
diverse spatial and temporal scales. New biogeochemical profiling floats (BGC-Argo) have begun to
observe nutrient distributions globally, but their 10-day cycling period limits the types of processes
they can capture. Small-scale dynamics, occurring on O(1) day and O(1) km, remain particularly
difficult to observe in-situ. Here, we show that random forest regression (RFR) can recover high-
frequency information by leveraging the sampling strategies of multiple ocean profilers. Our
RFR is trained, validated, and tested on BGC-Argo and shipboard data to within ~3% accuracy,
then applied to observations from two rapid-sampling Seagliders deployed during the Southern
Ocean Glider Observations of the Submesoscale (SOGOS) experiment in 2019. This approach
generates novel nitrate distributions at 50 times the horizontal resolution of the original float data.
Using the high-resolution RFR outputs, we identify signatures of nutrient injection into the mixed
layer that coincide with enhanced stirring in a turbulent region downstream of the Southwest
Indian Ridge. Relating these intermittent transport events to biological time series suggests that
small-scale stirring mediates additional nutrient drawdown and primary production in this region.
In our exploration of high-frequency nitrate variability in the Southern Ocean, RFR extends the
capabilities of the BCG-Argo array and allows for deeper understanding of biogeochemical cycling
at a more comprehensive set of scales. As a flexible approach that can be generalized to suit
other multi-platform observing systems, RFR presents new opportunities to maximize value from

existing datasets.
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SIGNIFICANCE STATEMENT: We use a regional random forest regression (RFR) to leverage
data from multiple ocean observing instruments that offer different advantages. In our study of
the Southern Ocean, we use RFR to produce new nutrient maps at 50 times higher resolution
than previously possible. By estimating small-scale information, RFR reveals interactions between
physical and biological processes during rapid mixing events that are normally difficult to observe.
These short-lived interactions appear to be important in determining local nutrient content and
therefore biological activity in this important ocean basin. Similar machine learning approaches
that can be applied regionally will extend possibilities for how we use data from increasingly

advanced ocean platforms.

1. Introduction

The ocean is mixed by physical processes spanning a wide range of temporal and spatial scales,
which mediate biogeochemical interactions in distinct ways. Nutrient distributions differ at basin-
wide scales and are broadly determined by the global circulation. At the mesoscale (horizontal
scales on O(20-200 km), evolving over weeks to months), lateral and vertical nutrient transport
processes are associated with coherent eddies that modify the density structure of the upper ocean
(Su et al. 2021; Patel et al. 2020; Levy and Martin 2013; Mahadevan and Archer 2000). These
widespread features subject local nutrient distributions to competing processes that are both depth-
dependent (biological utilization and remineralization) and density-dependent (transport along
isopycnals; Omand and Mahadevan (2013)). When eddy-associated motions transport nutrients
across the base of the mixed layer, increased availability in the biologically active surface layer can
enable more primary production if that nutrient was previously limited.

Over smaller distances and shorter periods, nutrient distributions are also impacted by high-
frequency motions at the submesoscale (scales of O(1) day and O(1) km; Lévy et al. (2024, 2018);
Mahadevan (2016); Lévy et al. (2012); Thomas et al. (2008); Mahadevan and Tandon (2006)).
Submesoscale dynamics are associated with enhanced vertical velocities, typically localized to
filaments and fronts, that cause vigorous exchange between the interior and surface ocean (Taylor
and Thompson 2023; Freilich and Mahadevan 2019; Thomas et al. 2008; Brannigan 2016). These
processes can exert a strong influence on local primary production and carbon export since light

and nutrient availability change rapidly with depth (Lévy et al. 2018; Klein and Lapeyre 2009;
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Erickson and Thompson 2018). Nutrient transport at submesoscales is particularly important for
mediating biological processes since motions at these scales occur on the same timescales as
phytoplankton growth (Mahadevan 2016). Vertical nutrient mixing along strongly tilted density
surfaces, including at submesoscale fronts, may be a significant pathway for nutrient fluxes in
highly turbulent regions depending on the structure of the nutricline (Freilich and Mahadevan
2019).

The Southern Ocean is one such energetic region, enriched in mesoscale eddies and submesoscale
stirring, that has outsized importance in the global climate and carbon system due to its distinctive
physical circulation and biogeochemical distribution (Gray 2024; Henley et al. 2020; Rintoul and
Naveira Garabato 2013; Talley 2013). Model simulations of Southern Ocean dynamics have
suggested that submesoscale stirring is a significant mechanism by which deep waters, enriched in
iron and other remineralized nutrients like nitrate and phosphate, exchange tracers into the surface
mixed layer (Uchida et al. 2019; Balwada et al. 2018). One experiment found that increasing the
resolution of a Southern Ocean biogeochemical model from 100 km to 2 km resulted in a nearly
two-fold increase in production due to nutrient injection into the mixed layer (Uchida et al. 2020).
Other numerical simulations suggest that where there are strong flow-topography interactions,
submesoscale upwelling may be the predominant mechanism by which dissolved iron reaches the
upper Southern Ocean (Rosso et al. 2016). These turbulent contributions to the nutrient supply
have global effects since the Southern Ocean is a central site of water mass formation (Talley
2013). Unfortunately, the challenges of sampling at the resolution required to observe these
small-scale dynamics have restricted our ability to constrain high-frequency nutrient fluxes using
in-situ observations. The impact of short-lived, filamentary mixing processes on upper nutrient
distributions remains poorly constrained using observations.

New observing technologies have emerged in the last twenty years to address this knowledge
gap, including autonomous profiling instruments called Argo floats. The deployment of thousands
of Argo floats has enabled new observation-based studies in previously undersampled regions (e.g.
Wong et al. (2020); Swart et al. (2023)). Some newer Argo floats, known as Biogeochemical-
Argo (BGC-Argo) floats, have been further equipped with biologically relevant sensors for oxygen,
nitrate, optical backscatter, and chlorophyll fluorescence (Claustre et al. 2020; Sarmiento et al.

2023; Roemmich et al. 2019). Although the Argo floats provide invaluable coverage of the global
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oceans, their characteristic profiling period of 10 days makes them more suitable for observing
processes at the mesoscale and larger. Ocean gliders are a different type of autonomous instruments
that sample much more rapidly than floats, returning profiles of the ocean interior every 4—6 hours,
and have provided novel observation-based insights into submesoscale physical mixing processes
(e.g. Rudnick (2016); Thompson et al. (2016); Erickson et al. (2016); Erickson and Thompson
(2018); Balwada et al. (2024)). Recent gliders have been equipped with sensors for oxygen, nitrate,
phosphate, pH, and optical properties (e.g. Possenti et al. (2021); Vincent et al. (2018); Birchill
etal. (2021)), but most Seagliders to date have not been deployed with a full suite of biogeochemical
sensors due to challenges with power demand, temporal responsiveness, and measurement drift
(Chai et al. 2020).

Here, we leverage these different sampling strategies using random forest regression (RFR) in
order to characterize small-scale, biogeochemical-physical interactions from in-situ ocean obser-
vations. Focusing specifically on nitrate variability in a turbulent region of the Southern Ocean, we
design a RFR model to maximize the information gained by two Seagliders deployed during the
Southern Ocean Glider Observations of the Submesoscale (SOGOS) mission in 2019. The regional
RFR is trained using nearby ship-based and BGC-Argo observations, including one BGC-Argo
float deployed in tandem with the SOGOS Seagliders. After validating model performance, we
apply the RFR to predict high-resolution, depth-resolved nitrate fields along the glider tracks and
identify new signs of enhanced nitrate variability at high frequencies.

The observational data are described in Section 2, followed by an explanation of the RFR
methodology and performance evaluation in Section 3a—b. Methods of characterizing the RFR
nitrate using time series and wavelet analysis are given in Section 3¢ and Section 3d, respectively.
In Section 4a, we demonstrate the strong performance of our Southern Ocean RFR before applying
it to Seaglider observations to generate novel, high-resolution nitrate maps. Section 4b highlights
relationships between different physical and biological time series in the upper ocean, while Section
4c explores what timescales of variability are important for nutrient transport events. We conclude
with broader implications of this work in Section 5 by commenting on the utility of deploying
heterogenous in-situ platforms together, as well as the applicability of RFR for bridging data gaps

in other observing systems.
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2. Data

During the 2019 SOGOS experiment, two Seagliders (SG659 and SG660) were deployed along-
side a BGC-Argo float (WMO 5906030; hereafter the SOGOS float) on the 106 Global Ship-based
Hydrographic Investigations Program (GO-SHIP) cruise. The two Seagliders were outfitted with
temperature (T), salinity (S), and pressure (p) sensors on an unpumped CTD (Conductivity-
Temperature-Depth instrument; CT-Sail) and an oxygen (O,) optode (Aanderaa 4330 standard
foil). Chlorophyll fluorescence and optical backscatter data at 470 nm and 700 nm were also
collected (WETLabs ECO puck). GO-SHIP stations provided T and S measurements as well as
discrete nitrate and oxygen concentrations from bottle data. The SOGOS BGC-Argo float, as well
as the other six BGC-Argo floats in this region (see Appendix) that are used for RFR training, were
equipped with sensors for T, S, p, O, as well as nitrate, fluorescence, and backscatter. To match
the vertical range of the Seagliders, only BGC-Argo and GO-SHIP observations down to depths
of 1000 m are used. For all platforms, time is reported as days elapsed since January 1, 2019
(yearday). Conservative temperature (CT), absolute salinity (SA), potential density(oy), spice
(1), Brunt-Viisili buoyancy frequency (N2), and oxygen saturation (Oo,,;) were calculated using
the Thermodynamic Equation of Seawater 2010 (TEOS-10) Python toolbox (IOC et al. 2010).
Processing of all platform data is further described in the Appendix.

The Seagliders sampled for 86 days, from May 1, 2019 to July 25, 2019, covering a region
spanning approximately 30—40°E and 50-54°S (Figure la). SG659 and SG660 completed 456
and 502 V-shaped dives, respectively, to ~1000 m depth and sampled during both the descent
and ascent. The gliders generally surfaced every 4—6 hours (profiles every 2—-3 hours) while the
BGC-Argo float sampled with a 5-day profiling frequency (16 profiles within the duration of the
Seaglider missions). After being deployed along the 30°E 106 cruise track around —51.5°S, the
three SOGOS profilers were advected eastward by the Antarctic Circumpolar Current (ACC). The
Seagliders pass through a standing meander region by the Southwest Indian Ridge (SWIR) on
yeardays 120-150, which is a known hotspot of enhanced eddy kinetic energy (EKE) (Balwada
et al. 2024; Yung et al. 2022). Further details on the deployment and trajectories of the Seagliders
are described in Dove et al. (2021).

Surface EKE over the SOGOS deployment is characterized using the delayed-time multi-

satellite gridded product (1/4° resolution) for sea level heights and derived variables pro-
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FiG. 1: (a) Trajectories for Seagliders SG659 (blue) and SG660 (magenta) and SOGOS float profile
locations (yellow diamonds). Grey box denotes the area in panel (b), showing an expanded view of
the float (yellow) and glider SG660 (magenta) as they traverse from the high EKE region (yeardays
120-150) to the low EKE region (yeardays 170-200). Magenta text indicates yearday of the subset

of observations highlighted in purple. Background colored by eddy kinetic energy (EKE, m?s~2)
averaged over the Seaglider deployment period.

duced and distributed by Copernicus Marine Environment Monitoring Service (CMEMS;
https://doi.org/10.48670/moi-00148). The altimetry product provides zonal and meridional
geostrophic velocity anomalies (u, and v,, respectively) from which EKE is calculated as
%1 /uéz + v:gz. Following the framework in Dove et al. (2021), we delineate a high EKE region (year-
days 120-150; EKE > 0.124 m? s~2) and a low EKE region (yeardays 170-200; EKE < 0.109 m?s~2)
within the SOGOS deployment.

In our analysis of mixed layer properties along the glider trajectories, we utilize satellite-based
estimates of photosynthetically active radiation (PAR) from Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite data at 4 km resolution in 8-day composites (NASA/GSFC OBPG;

Dataset ID: erdMH1par08day). To determine where gliders may be sampling across subme-
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soscale fronts, we also use the finite-size Lyapunov exponent (FSLE) value-added L4 product from
delayed-time merged Global Ocean Gridded Absolute Geostrophic Velocities (1/25° resolution;
backward-in-time) provided by AVISO (DOI 10.24400/527896/a01-2022.002). FSLE values have
been shown to correspond to localized regions of high strain rate; filaments of large negative FSLEs
(computed backward-in-time) indicate lines of strong stretching that constrain fluid motion and
transport around coherent structures, including along submesoscale fronts and around mesoscale

eddies (d’Ovidio et al. 2004; Siegelman et al. 2020).

3. Methods

a. Random Forest Regression

Random forest regression (RFR) is a supervised machine learning method that uses an ensemble
(forest) of n “weak” learners (decision trees) to make strong predictions (Breiman 2001). The RFR
is given a set of observed predictor variables (“features”) as inputs, and a split condition based on
a feature is determined at each branch of each decision tree. During training, each split criterion
aims to best separate the target observations (here, of nitrate) into branches, or regions R;, with
the least variance. Each resulting region after splitting is assigned the average target value ;.
After training is complete, new input observations are sorted into their respective R;’s using the
determined conditions, and then assigned Jg; as the predicted target value. The decision at each
node split in RFR is limited to a random subset of all features provided. As a result, the trees
of RFR are less correlated than those in a family of “bagged” trees which consider all possible
features at all nodes. RFR also uses “bootstrapping” , or subsampling data with replacement, so
that each decision tree is trained on a slight variation of training data. By introducing randomness
both in the node features considered and in the training data used for each decision tree, RFR is
less prone to overfitting on data that are not randomly distributed in space and time (Stock 2022;
Sharp et al. 2022b).

RFR returns a measure for each feature called “feature importance” that reflects its predictive
value. For each split where a given feature is used to determine the split criterion, the difference in
the variance of the pre-split node compared to the two post-split nodes is calculated (and weighted
by the number of samples in the pre-split node). These values are summed across all of the relevant

splits in a given decision tree; the average of these sums across all trees represents the feature
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importance of the given variable. The feature importances are computed for all variables used in
the model, and are scaled relative to each other so that the sum of all of the final feature importances
is 1. The feature importances are often screened during RFR development to help select a final set
of features.

Since nitrate variability is dependent on a wide range of physical, chemical, and biological
factors, we explored the use of many possible “feature lists” (the set of predictor features provided
for RFR) for our RFR. Predictive features such as CT, SA, oo, 7, N2, Oy, Ossat, as well as
coordinate features such as latitude (lat), longitude (lon), time, and season (sz; and szp) were
considered in different versions of the model. 7 is a measure of temperature and salinity variations,
and acts as a tracer of water masses in the interior ocean. We applied a logarithmic transformation
to the N? data since its distribution is initially non-Gaussian. Seasonal information was encoded

as two training variables, sz; and sz, following Sharp et al. (2022b):

§z1 = cos(2m *yd/365), "
5z7p = sin(27 = yd /365),

where yd refers to the yearday (days elapsed) referenced to January 1, 2019. The two variables
together add a cyclical signal representing the time of year, or season. Of the feature lists considered,
results from a selection of seven models with increasing complexity are presented in Section 4a.1.
Each RFR was constructed using the scikit-learn Python RandomForestRegressor package with
n = 1000 trees; a random one-third subset of the features were considered at each node (Breiman
2001), with a minimum node sample size of 5 for a split to be considered.

During RFR development, observations are separated into different datasets for training, vali-
dation, and testing steps (Figure 2). We note that the observations within a single glider or float
profile are highly correlated; since the individual profiles are the “independent” units here rather
than the pointwise samples, we keep observations from vertical profiles together during data split-
ting. Our RFR is trained and validated using GO-SHIP 106 bottle data and observations from six
BGC-Argo floats (WMO: 5904469, 5904659, 5905368, 5905996, 5906031, 5906207; Figure 3a),
which provided coverage of the Antarctic Southern Zone (ASZ) bounded by the Polar Front and
Sea Ice Edge (Sauvé et al. 2023). The BGC-Argo float training observations cover a time period

between May 8, 2017 and July 7, 2021, within approximately two years before and after the SO-
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Fic. 2: Available ship, float, and glider observations are intercalibrated and quality controlled
before model development. The regional GO-SHIP and BGC-Argo data (excluding the SOGOS
float) are split into training and validation subsets, while the SOGOS float is withheld for testing.
The RFR outputs are nitrate profiles with high horizontal resolution reaching depths of ~1000 m
along the Seaglider tracks.

GOS glider deployment (Figure 3b). The combined GO-SHIP and BGC-Argo dataset is split into
the training (80%) and validation (20%) datasets as is common for machine learning workflows.
After the RFR model is developed on the training data, we compute validation errors on this 20%
withheld validation data (hereafter called the “simple holdout” validation dataset; Figure 4a) to
give a first-order estimate of model performance.

Using training observations that are spatiotemporally correlated can lead to validation error
biases that obscure the true performance of the model when applied to data outside of the training
dataset (Millard and Richardson 2015; Stock and Subramaniam 2022). We therefore rely on
two other cross-validation techniques; the first is k-fold, in which RFR is validated iteratively on
a random 1/kth sample, or “fold” of the data (Figure 4b). Combining results across all folds
produces a more representative validation error distribution for each version of the model (Kohavi
1995). Additionally, we apply a variation of spatial leave-one-out (SLOO) cross-validation, which
examines model performance by withholding all observations from one profiling float at a time
(Figure 4c; e.g. Le Rest et al. (2014); Stock and Subramaniam (2022)).

Typical machine learning workflows construct test datasets by removing a small (1-10%) random

subset of the data available for training. However, our goal for testing in this particular use case
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is to get a final independent estimate of model error when applied onto the Seaglider tracks.
Since the Seagliders sample close to the SOGOS float by experimental design, the entirety of the
SOGOS float data (WMO 5906030) is reserved for testing. The training dataset consists of 11645
observations, and the validation dataset has 2933 observations; the test dataset from the withheld
SOGOS float has 3308 observations from 16 profiles. We emphasize that RFR applications in the
geosciences should consider the specific goal of RFR when determining what data constitutes the
training, validation, and test datasets.

After selecting the optimal feature list during validation and testing, we train a final RFR model
using the chosen feature list. At this stage, we combine the training, validation, and test datasets
(representing all available GO-SHIP and BGC-Argo data) to serve as an expanded training dataset
for the the best model performance. This RFR is applied to the Seaglider observations to estimate

high-resolution nitrate fields.

b. Alternative Machine Learning Models

We compare RFR performance to that of two currently existing machine learning algorithms
that have been applied for nutrient estimation. The CArbonate system and Nutrients concentration
from hYdrological properties and Oxygen using a Neural-network version B (CANYON-B) uses
Bayesian neural networks to predict nutrient variables (nitrate, phosphate, silicate) from a set
of predictive features including T, S, p, O, latitude, longitude, and/or day of the year (Bittig
et al. 2018). The Empirical Seawater Property Estimation Routines (ESPER’s) are another set of
predictive biogeochemical algorithms (Carter et al. 2021), and the ESPER-Mixed routine combines
estimates from neural networks and locally interpolated regressions. CANYON-B and ESPER-
Mixed are trained primarily on cruise data from different releases of the Global Data Analysis
Project (Olsen et al. 2019). To produce nitrate estimates from ESPER-Mixed, we use input features

of T, S, p, O», latitude, and longitude; for CANYON-B, the same features plus time were considered.

¢. Mixed Layer Characterization at High Frequencies

We analyze mixed layer properties of both physical and biogeochemical parameters over the
course of the SOGOS deployment, which we divide into regions of high and low EKE (Section
2). Along-track glider EKE is calculated by interpolating the satellite surface EKE to the average

12
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location of each glider profile. Mixed layer depth (MLD) was calculated following Dove et al.
(2021) as the depth at which density is first 0.05 kgm™> greater than the density observed at 10 m.
The absolute horizontal buoyancy gradient in the mixed layer (|V,b]) is estimated for each ith
profile following |V;,b|; = (|bis1 — bi—1])(Ad)~!, where b; is the mean buoyancy in the mixed layer
for the ith profile and Ad is the horizontal distance between profiles at indices i — 1 and i+ 1.
Overall, Vb is an underestimate of the strength of the fronts because the gliders do not always
sample these features perpendicularly (Thompson et al. 2016). However, we expect a few outlying,
large V;,b values, which can occur when the depth-averaged current causes the glider separation
Ad to be small due to the surfacing position being close to the dive position. We choose not to
account for the impact of the depth-averaged current in this analysis.

The mixed layer mean nitrate (N7, in pmolkg™") represents the integrated nitrate content in

the mixed layer, normalized by the thickness of the mixed layer (4,7, in m):

_ 1 0
Nyr=-— [NO3]pdz, (2)

hmr —hmL
where [NOZ](z) is the RFR-nitrate prediction in pmol kg~!, and p(z) is in-situ density in kgm>.
In practice, the integral is estimated using trapezoidal sums on the irregularly vertically spaced
observations. We also analyze the difference in nitrate concentration across the base of the mixed
layer (ANys1), which is defined as N 7, minus the mean nitrate concentration 20 m below the MLD

(calculated over the depth range 10-30 m below the MLD). Horizontal variance of the mixed layer

2

HNOs in pmol®kg~2) is calculated as the variance in N y;; when binned into 10-profile (~2

nitrate (s
day) windows that overlap by 2 profiles (~10 hours). To relate the nitrate time series to evidence of
biological production, we also track the mixed layer mean optical backscatter at 470 nm (%470),
which is calculated following the same method in Equation 2). Backscatter measures the scattering

of light by particles present in the water, and serves as a proxy for particulate organic carbon.

d. Wavelet Analysis for Timescales of Variability

We apply wavelet analysis to the RFR glider estimates to detect important timescales of nitrate
variability in the mixed layer. A wavelet represents a local function in the frequency-time space,

centered around 0, with a particular frequency distribution. Using wavelet analysis to return time-
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localized information (over spectral analysis) is particularly useful when analyzing climate data
because of non-stationarity and persistence in the time series (Grinsted et al. 2004; Torrence and
Compo 1998). Here, we apply a version of a continuous wavelet transform (CWT) called the
weighted-wavelet Z transform (WWZ), which decomposes the time series into dilated and shifted
transformations of a complex Morlet wavelet (a sinusoidal wave with Gaussian decay). In essence,
WWZ returns information on how closely a signal resembles the wavelet defined at a given time
and frequency (Foster 1996). WWZ is suitable for irregularly spaced data since it does not rely
on interpolation, which can misrepresent the true spectral content of the time series (Torrence and
Compo 1998). All signal processing is performed using the Python package Pyleoclim designed
for use on climate time series (Khider et al. 2022). Significance testing is done by comparison to
the CWTs of 1000 iterations of the theoretical red noise, first order autoregressive process AR(1)

benchmark (Torrence and Compo 1998).

4. Results

a. Random Forest Regression
1) RFR TRAINING

During RFR training, we explore the performance of different feature lists by evaluating the
feature importance and validation errors for each model version; results from seven example models
are presented here. Model A represents the simplest RFR feature list, using only two variables, T
and oy, while models D-G incorporate additional spatiotemporal information (Figure 5a). RFR
feature importance is one measure of the predictive capability of a given predictor variable (Methods
Section 3a), but the limitations of using feature importances alone for final feature selection has
been noted previously (e.g. Strobl et al. (2007)). Whereas SA, p, and O, consistently appear to
have strong predictive capability in our RFR, other spatial and temporal features (like latitude,
longitude, and time) return low feature importance (Figure 5b). However, when we evaluate the
models on validation data, these spatiotemporal features improve the performance of the RFR as
indicated by reductions in the error bias, median absolute error (MAE), and interquartile range of
the absolute errors (IQR-AE) (Table 1; Figure 6). To give an example of how feature importance
can misrepresent predictive power, we consider a feature (e.g. latitude) that may be primarily

useful toward the top of a decision tree for an initial splitting of the data, but less useful than other
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features further down in the tree. Given how feature importances are calculated, latitude would
then return low feature importance despite providing a critical “pre-sorting” of the data that allows
the high feature importance predictors to be effective in the rest of the tree. We emphasize that
without also evaluating validation error distributions of the different models, using only feature

importance could lead to sub-optimal feature selection.
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Fic. 5: (a) Feature lists for models A through F, showing which variables are considered during
RFR training for each version of the model. (b) Feature importances [unitless], as described in
Section 3a, for models B, C, D and G. The sum of all feature importances for a given model is one.

2) RFR VALIDATION

We next use simple holdout validation, which computes prediction errors on 20% of withheld
GO-SHIP and BGC-Argo data, to assess suitability of the feature lists (Figure 4a). This holdout
validation is a common first-order approach to assessing performance from different feature lists.
Replacing T and oy in model A with CT and SA, and adding biogeochemical information (O;) with
spatiotemporal coordinates (latitude, longitude, yearday, and season) in model D all contribute
to decreasing the simple holdout validation MAE (+ IQR-AE) from 0.309 pmolkg™! (+ 0.461)
to 0.142 pmol kg'l (£ 0.205) (Table 1). If a particular feature can be calculated from the other
variables in the feature list, its inclusion does not seem to improve performance. For example,
adding Oy, to a feature list that already has O, as a predictor will yield nearly the same results.
Likewise, the addition of N? does not improve performance noticeably in model F over model D.

This characteristic is likely because CT, SA, and p already encode much of the same information,
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and/or because the variable is too noisy to be an effective predictor. From the simple holdout
validation alone, the distinctions in performance between model D and G are unclear since the
models have very similar MAE (+ IQR-AE) values (0.146 (+ 0.211) pmolkg'1 for model D and
0.142 (= 0.205) pmolkg_l for model G; Table 1).

Model Validation MAE Validation IQR-AE Validation Median Bias

A 0.3089 0.4605 -0.0554
B 0.2669 0.3686 -0.0241
C 0.2431 0.3533 -0.0141
D 0.1455 0.2106 -0.0154
E 0.1459 0.2140 -0.0172
F 0.1525 0.2245 -0.0149
G 0.1422 0.2047 -0.0171

TaBLE 1: Simple holdout (20%) validation errors for models A through G, whose feature lists
are given in Figure 5. Median absolute error (MAE), interquartile range of the absolute errors

(IQR-AE), and median bias are reported in pmolkg™".

3) RFR CRross-VALIDATION

To better distinguish the feature list with the best predictive performance and lowest overfitting
tendency, we use both k-fold cross-validation and spatial leave-one-out (SLOQO) cross-validation.
During k-fold cross-validation, we generate a larger set of validation errors to differentiate perfor-
mance between models. For k=10 in our case, ten RFR models are trained, each time training on
observations from nine folds and withholding one fold for validation (Figure 4b). The distribution
of 10 k-fold MAEs for each model reflects similar results to those from simple holdout validation
above, where models D—G significantly improve performance over models A—C (Table 2; Figure
6a). For models D—G, the validation errors across folds have a small spread despite being trained
on shuffled data; the consistent performance suggests that the model is robust and generalizes well
to new data.

We next combine the k-fold cross-validation errors across folds to estimate a probability density
(Gaussian kernel density estimate; KDE) for each of the models (Figure 7a). All models have
slightly negative bias (center of curves in Figure 7a) but the bias is significantly improved for

models D-G (~0.02 pmolkg ™), seemingly due to the inclusion of latitude, longitude, and yearday
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Model K-Fold MAE K-Fold IQR-AE K-Fold Median Bias

A 0.2857 0.4419 -0.0531
B 0.2683 0.3837 -0.0351
C 0.2463 0.3474 -0.0389
D 0.1419 0.2118 -0.0190
E 0.1456 0.2144 -0.0173
F 0.1477 0.2207 -0.0201
G 0.1380 0.2023 -0.0152

TaBLE 2: K-fold cross-validation errors for models A through G (combined across all folds), whose
feature lists are given in Figure 5. Median absolute error (MAE), interquartile range of the absolute

errors (IQR-AE), and median bias are reported in pmol kg_l.
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FiG. 6: (a) Spread of aggregated k-fold cross-validation MAEs (nmolkg™!) across models A-G.
(b) Cross-validation errors in 100-m depth bins for models D (blue) and G (purple). Float nitrate

measurement uncertainty of + 0.5 prnolkg'1 in dashed red lines (Maurer et al. 2021).

features (Table 2). The peak of the KDEs for models D-G suggest that the inclusion of seasonal
variables sz; and sz as predictors in model G leads to the best performance out of the four
models. From aggregating validation errors into 100 m bins to examine the depth-dependence of
performance, we find that the improvements in model G over model D are mostly in the upper
200 m near the surface (Figure 6b).

We conclude validation by using a spatial leave-one-out (SLOO) cross-validation technique on
models D and G, which is a useful technique in geoscience contexts for assessing the impact of spa-

tiotemporal correlations in the observations used for training (Stock 2022; Stock and Subramaniam
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Fic. 7: (a) Gaussian kernel density estimate (KDE) for k-fold cross-validation errors from models
A—-G. The probability density is most closely centered around O for model G. Float nitrate mea-

surement uncertainty of + 0.5 jpmol kg_1 in dashed red lines (Maurer et al. 2021). (b) Zoomed in
view highlighting the peaks of the KDE’s for models D-G.
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Fic. 8: Spatial leave-one-out validation errors on six floats. Colored dots denote the validation
MAE’s for each withheld float WMO; ”590” truncated from all float labels in legend. Float nitrate

measurement uncertainty of + 0.5 pmolkg ™' in dashed red line (Maurer et al. 2021)

2022). BGC-Argo training floats were selected due to their temporal and spatial proximity to the
SOGOS float and gliders, but these training observations are taken at different points in time and in
slightly different regions (Figure 3). Here, we iteratively leave out one float to serve as a validation
dataset, training on the remaining five floats (Figure 4c). The six SLOO models return an average
validation MAE (= IQR-AE) of 0.406 pmolkg_1 (+ 0.148) for model D, and 0.379 pmolkg_1
(£ 0.192) for model G. The SLOO validation errors on a single float tend to be higher than those
from simple holdout validation, but in general model G returns lower validation errors than model
D for five of the six floats. Only the validation errors on float WMO 59055996 increase slightly
from model D to model G. We use training observations from this particular float that are taken
farther west than the SOGOS deployment (10°E versus 30°E) since the overall tracer distributions
appear to match those of the SOGOS float. However, float WMO 5905996 is near the Polar Front
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and spatially separated from many of the other training floats in the east, such that the training
data may be less representative of the float WMO 5905996 observations withheld from validation.
During early model development, floats that returned especially poor SLOO cross-validation errors
were removed from the training data before the final set of BGC-Argo floats was chosen. From
both k-fold and SLOO cross-validation results, we select feature list G for the next steps of RFR

development.

4) RFR TESTING

We test our RFR (model G) using the withheld SOGOS float data (Figure 9a), and find a test
validation MAE (= IQR-AE) of 0.203 (+ 0.290) pmolkg_l, corresponding to a 0.22% relative
error and mean bias of +0.082 pmolkg™!. When the float test MAE is computed only over the
period of Seaglider deployment (yeardays 120-200), the MAE is 0.345 pmolkg™ (+ 0.428),
which is slightly higher than that calculated over the larger SOGOS float dataset extending into
2020 (Figure 9c). This difference may be due to the fact that the SOGOS deployment begins in one
of the most energetic regions of the global oceans. The pattern of overestimation reaches yearday
~250 (end of August), which is around the end of austral winter. Even so, 84% of all test MAEs
are < 0.5 pmol kg_1 (float nitrate measurement uncertainty for BGC-Argo; Maurer et al. (2021))
and 95% of test MAEs are < 0.732 pmolkg™".

The RFR test errors exhibit significant variability both in time (horizontal axis) and along depth
(vertical axis in Figure 9c). Under the mixed layer, the RFR test errors show small but persistent
overestimation. These positive errors in the interior may result from the fact that the larger
BGC-Argo training dataset covers a slightly wider range of nitrate values than the SOGOS float
observations alone, particularly at lower concentrations. The narrower range of nitrate observed
by the SOGOS float is not unexpected, given that the SOGOS float samples during austral fall and
winter, while the broader BGC-Argo training dataset covers the annual cycle. All of the BGC-Argo
and GO-SHIP data used for training were from the same region in the ASZ that the SOGOS
float samples, so we expect that the same water masses were observed in the training/validation
and test data (Figure 3). Above the MLD, there are different patterns of alternating over- and

underestimaton that may be related to nitrate anomalies associated with mesoscale structures.
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F1G. 9: Nitrate (umol kg_l) (a) observed by the SOGOS float and (b) predicted by RFR model G for

the upper 1000 dbar. (c) Nitrate prediction error (predicted — observed; pmol kg_l) over the same
pressure range. MLD in magenta lines. Horizontal time axis in month ’year format; corresponding
yearday (relative to Jan 2019) in grey.

For a final evaluation of our RFR model performance, we compare the output to predictions made
from two other robust machine learning algorithms, CANYON-B and ESPER-Mixed (Methods
Section 3b; Bittig et al. (2018); Carter et al. (2021)). The two algorithms perform similarly with
excellent performance under 200 m (Figure 10b-c). Strong performance of both models in the
ocean interior underscores the utility of machine learning methods for tracer estimation. However,
within the mixed layer, both CANYON-B and ESPER-Mixed outputs persistently and substantially
underestimate nitrate (Figure 10b-d). The underestimation may be due to temporal biases where
the cruise observations used to train CANYON-B and ESPER-Mixed are heavily biased towards
austral summer (Bittig et al. 2018). Mixed layer nitrate is expected to be lower during these
months when biological utilization is most active. In contrast, our observations are later in austral

fall when the mixed layer deepens and productivity decreases to low background levels (Su et al.
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Fic. 10: Relative prediction errors [(predicted-observed)/observed] for SOGOS test float data in the
upper 500 dbar using (a) RFR, (b) CANYON-B, and (c) ESPER-Mixed. Results not shown between
500 dbar and 1000 dbar are similar to those under ~300 dbar. MLD in magenta lines. Horizontal
time axis in month ’year format; corresponding yearday (relative to Jan 2019) in grey. (d) Test

errors (jumol kg'l) in 100-m depth bins for RFR (purple), CANYON-B (teal), ESPER-Mixed (tan).

(2022)). CANYON-B, which considers day of year, returns better predictions in the upper 200 m
than ESPER-B, which does not use time as a predictor. This increased performance in the upper
ocean of CANYON-B relative to ESPER-B mirrors how the addition of seasonal variables to our
RFR model G improved performance over model D (Figure 6). Descriptions of the algorithms in
Carter et al. (2021) and Bittig et al. (2018) mention that the seasonality and exact values of their
models’ output should be taken with caution in the upper ocean. The relative success of our RFR
method in estimating mixed layer distributions suggest that targeted regional models may be able
to recover useful information about the upper ocean that is lost in globally trained models.

Using feature list G, we train a final RFR model using all the available GO-SHIP and BGC-Argo
data, including those from the SOGOS float. This approach utilizes all the observations possible
to yield the best predictive power, but only after cross-validation is complete. Once the final RFR

has been trained, we supply high-frequency Seaglider observations as inputs to the model and

21



422

423

424

425

426

427

428

429

430

431

432

433

434

435

generate novel nitrate distributions at high horizontal resolution along the glider tracks (Figures
11b, 12). The gliders have average horizontal distance of ~1.5 km between profiles (downcast
and upcast are separate profiles), whereas the BGC-Argo float profiles are separated by ~70-80
km. Application of RFR therefore results in a ~50-fold increase in horizontal resolution for the
nitrate distributions in this region (Figure 11b). Though the float profiles are sparse relative to
those from the gliders, the SOGOS float’s sampling frequency of 5 days is already faster than the
typical profiling period of 10 days for most Argo floats. Scientific questions that can be addressed
using the global BGC-Argo array may be limited by resolution, but an RFR approach can extend
rich regional datasets from floats by leveraging the spatiotemporal resolution offered by different

platforms.
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Fic. 11: Nitrate (pmolkg™") (a) observed by the SOGOS float over a period of ~30 days (6 profiles)
and (b) predicted by RFR model G for glider SG660 over the same time period (428 profiles).
Horizontal time axis in day-month format for 2019; corresponding yearday (relative to Jan 2019)
in grey.

b. Mixed Layer Variability from High-Frequency RFR Estimates

The RFR-derived nitrate distributions enable analysis of mixed layer variability at much higher
temporal resolution than previously possible in this region. High-frequency variability in the

nitrate distributions is most evident below the base of the mixed layer (Figure 12). We note that CT
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Fic. 12: (a) Potential density referenced to surface (oy), (b) spice (1), and (c) nitrate (pmolkg_l)
sections from SG659 plotted in time-pressure space; (d) nitrate plotted in time-density space. (d-f)
Same variables as left, but for SG660. Dashed red lines bound the high EKE region (yeardays
120-150) and dashed black lines the low EKE region (yeardays 170-200). Horizontal time axis
in month-day format for 2019; corresponding yearday (relative to Jan 01 2019) in grey. Sections
showing the full nitrate prediction to 1000 m are given in Supplementary Information.

and SA are impacted by atmospheric surface forcing (including heating, cooling, evaporation, and
precipitation) that typically occurs at larger scales, such that small-scale variability generated by
stirring tends to be reduced in the mixed layer relative to the interior. Since RFR uses both CT and
SA for nitrate prediction, these parameters may contribute to similar erasure of rapid variability
in the mixed layer nitrate. Although the dampening of high-frequency variability in the mixed
layer could be partially due to artifacts of the RFR model, biological drawdown of nitrate near the
surface would also tend to decrease nitrate variability at short timescales when rapid injection is
met with utilization.

We focus our next analysis on processes affecting the mixed layer, using various time series to
quantify the strength and timing of nutrient injection into the upper ocean. Nutrient supply into the

mixed layer can be mediated both by uplifting of isopycnals and changing of MLD, or direct tracer
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transport along isopycnals across the base of the mixed layer (Freilich and Mahadevan 2019). To
interpret relationships between the nutrient and physical dynamics of this region, we divide the
SOGOS deployment into two regions of different EKE (Section 2). The three SOGOS platforms
observe a high EKE region by the Southwest Indian Ridge (yeardays 120-150) before passing
into a low EKE region downstream (yeardays 170-200; Figures la, 13a). Previous physical
characterization of this region in Dove et al. (2021) suggests that the high EKE region is rich
in submesoscale instabilities that affect vertical stratification at the base of the mixed layer and
promote greater biogeochemical exchange between the mixed layer and ocean interior.

We use changes in the RFR-derived mean mixed layer nitrate N ;; as a proxy for deep, nutrient-
rich waters reaching the upper ocean. Any motions that stir nitrate-rich filaments into the mixed
layer would also deliver other remineralized nutrients. Since large areas of the Southern Ocean
are limited by iron, local decreases in Ny, may be attributed to additional biological utilization
spurred by iron availability. Values for Ny, tend to be lower in the high EKE region (yeardays
120-150) than in the low EKE region (yeardays 170-200; Figure 13d), which we associate with
higher levels of productivity using satellite light availability (PAR) and optical backscatter (bb p470;
Figure 13g,h). The decrease in Ny coincides with an increase in optical backscatter, indicating
more particulate organic carbon in the upper ocean. At this point in austral fall, summer blooms
have already utilized available nutrients in the mixed layer and light availability is decreasing, so
background biological activity is relatively low (Su et al. 2022). Still, additional nutrient input into
the mixed layer can spur productivity, although full bloom initiation could take weeks or occur
only weakly. There are occasionally significant differences in the Ny observed by the different
platforms (e.g. yeardays 150-165; Figure 13d), which can be partially attributed to periods of
increased spatial separation between the gliders and SOGOS float (Figure 1b).

For other characteristics like MLD and the difference in nitrate across the base of the mixed layer
(ANys1), the time series from the three SOGOS platforms reflect that the SOGOS float misses the
rapid variability captured by gliders (Figure 13b,e). The ANy, calculated from the SOGOS float
observations are consistently small within the high EKE region (yeardays 120—150). In contrast,
the ANy, estimated from RFR glider nitrate changes rapidly and reaches values twice as large as
those from the float (Figure 13e). Though long-term trends from both platforms may be similar, the

long profiling period of the BGC-Argo obscures significant patterns evident in the glider nutrient
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Fic. 13: For SG659 (teal), SG660 (magenta) and SOGOS float (yellow diamonds, when available),
(a) along-track eddy kinetic energy (EKE); (b) mixed layer depth (MLD); (c) horizontal buoyancy
gradient (Vj,b) in the mixed layer; (d) mixed layer mean nitrate concentration (N s ); (e) difference
in nitrate concentration across the base of the mixed layer (ANy,y ); (f) horizontal variance in mean
mixed layer nitrate (51%1, N03) for 10-profile window (~2 days); (g) logarithm of mixed layer mean
backscatter at 470 nm (bbpa70), (h) photosynthetically active radiation (PAR). Horizontal time axis
in day-month format for 2019; corresponding yearday (relative to Jan 01 2019) in grey. Dashed
red lines bound the high EKE region (yeardays 120-150) and dashed black lines bound the low
EKE region (yeardays 170-200). Panels d—f use the RFR-predicted nitrate fields while the rest are
observed quantities.
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signals. We comment further on the platforms’ distinct sampling strategies and the respective
benefits in Section 5.

Strong fluctuations in the mixed layer nitrate signals coincide with signs of increased physical
stirring at small scales. When the gliders sample the high EKE region (yeardays 120-150), they
observe intermittent shoaling of the mixed layer (Figure 13b) as well as enhanced horizontal
buoyancy gradients that indicate submesoscale structures (Figure 13c; previously explored in Dove

et al. (2021)). Analogously, we use the RFR glider nitrate estimates to demonstrate that the

2

high EKE region frequently exhibits higher horizontal variance in mixed layer nitrate (s, NOg)

as compared to the low EKE region (Figure 13e). Higher values of s%l NO: in the high EKE
region suggest that the RFR glider estimates are resolving filaments of water masses with distinct

nutrient characteristics, sourced from different regions, as they are stirred at mesoscales and

2

submesoscales. The timing of elevated SHNOS

coincides with the sharp gradients in MLD and
intensified lateral buoyancy gradients observed by the gliders (e.g. yeardays 125, 131, 137, 148
for SG660). Altogether, characteristics of the RFR-derived nitrate over time appear consistent
with enhanced submesoscale upwelling of nitrate through the steepening of density gradients and

weakening of stratification at the base of the mixed layer.

c. Timescales of Nutrient Variability

We next characterize the important temporal scales at which upper ocean nutrient content varies
by applying wavelet analysis; the high-frequency RFR nitrate estimates allow us to assess variability
at a more comprehensive range of periods (from ~5 hours to ~50 days). Along-isopycnal nitrate
and spice are tracked on a range of density surfaces that are generally within the nutricline, with
average depths of the corresponding isopycnals (d) ranging from ~170-400 m for SG660 (Table
3; Figure 12h). Applying continuous wavelet transform (CWT) on the along-isopycnal nitrate and
spice signals shows which frequencies of variability are dominant in each signal, and at what point
in the deployment; higher CWT amplitudes indicate enhanced variability at that given frequency
and time.

The along-isopycnal nitrate CWTs reflect significant frequencies of nitrate variability that are both
in the mesoscale and submeoscale range. We caution that significance should only be interpreted

outside of the shaded “cone of influence” (COI). This excluded region is a result of the finite nature
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(o)) d

27.30 174.63
27.40 223.68
27.50 296.80
27.60 396.92

TasLE 3: Average depth (d) of analyzing isopycnal (o) for SG660

of the time series; wavelets defined at periods of X days can only be considered significant X days
after the start or from the end of deployment. At mesoscale periods > 20 days, there appear to be
significant bands of high CWT amplitudes in both nitrate and spice during yeardays 140—150 when
the glider samples the eddy-rich, high EKE region (Figure 14a,b). These patterns of enhanced
high-frequency variability extend down to the base of the nutricline at ~400 m (Figure 14).

At submesoscale periods (~ 0.2 days to ~2 days), the CWT plots show several short-lived events
(e.g. yeardays 130, 137, 150) during which both nitrate and spice variability are strongly enhanced
in the interior between 200 m and 400 m depths. Increased CWT amplitudes at submesoscales
continue to occur sporadically, although weakly, in the low EKE region after yearday 170 along the
shallow isopycnals d < 223 m (Figure 14). High CWT amplitudes at submesoscales tend to occur
where there are sharp gradients in MLD and shoaling of the analyzing isopycnal (yeardays 130,
137), presumably due to eddy activity (Figure 15a—c). During these short events, the glider appears
to sample across filaments of enhanced FSLE (Figure 15d-f), which are typically found around
submesoscale fronts or between mesoscale eddies (Siegelman et al. 2020). Not all times at which
the glider appears to sample strong MLD gradients are associated with enhanced submesoscale
variability in the nitrate CWTs (e.g. yeardays 124, 147, Figure 15a—c).

Our wavelet analysis suggests that nitrate variability is often dominated by mesoscale modulation
of water masses at periods between ~20 to 50 days. However, especially in the high EKE region,
rapid changes in along-isopycnal nitrate appear to occur in intermittent, short-lived events at
timescales associated with submesoscale stirring (~0.5 to 2 days). Although not within the scope
of this paper, a different method using wavelet transform coherence could be used to measure
the correlation between CW'Ts, i.e. the shared variability of two signals (Foster 1996). This

type of analysis would explore how physical and biological time series co-vary, and what mixing
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Fic. 14: (a-d) CWTs of RFR nitrate estimates from SG660 along four analyzing isopycnals (3).
(e-h) CWTs of observed spice from SG660 along the same isopycnals. Dark grey lines are 95%
significance contours. Dashed red lines bound the high EKE region (yeardays 120-150) and dashed
black lines the low EKE region (yeardays 170-200). Inertial period at this latitude is ~0.643 days,
or 15.4 hours.

s mechanisms would lead to strong or weak covariance at different frequencies and times. Continued

s progress in nutrient mapping at higher resolutions, here achieved by RFR, will invite new methods
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of quantifying tracer variability at a comprehensive range of scales.
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FiG. 15: (a, b) Nitrate and spice CWTs from SG660 for analyzing isopycnal o= 27.5, which is

on average at d=296 m. Dark grey lines are 95% significance contours. Cone of influence (COI)
plotted in dashed black; results insignificant within white shaded region. (c) Glider SG660 nitrate
section with analyzing isopycnal 0p=27.4 in red dots; MLD in black dots. Dotted magenta lines in
panels a—c indicate the yeardays represented in panels d—f. (d-f) Surface FSLE at daily resolution,
with SG660 profile locations in magenta dots for a given yearday.

5. Discussion and Conclusions

Our motivation for developing a regional random forest regression (RFR) for nutrient prediction
was to bridge observational gaps at short timescales and extend insights into Southern Ocean nutri-
ent variability. We train the RFR model on nutrient observations from regional BGC-Argo floats,
then apply the RFR on inputs from rapid-sampling Seagliders to generate upscaled nitrate distri-
butions. Using the observation-based RFR estimates, we find enhanced high-frequency variability
in mixed layer nitrate in a turbulent region with enhanced submesoscale stirring. Quantifying
the dominant timescales of variability over time with wavelet analysis suggests that nutrients are

sporadically injected into the upper ocean in small-scale filamentary structures during short-lived
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events; such rapid variability is only evident in the RFR glider estimates and not in the original
BGC-Argo float observations.

The multi-platform SOGOS experimental design is well-suited for RFR because each of the
observing platforms has distinct advantages. The SOGOS float measures an additional variable
(nitrate), while the Seagliders measure at higher resolution (2 profiles every 4—6 hours, instead of 1
profile every 5 days). By deriving high-frequency nitrate estimates along the Seaglider tracks with
RFR, we can explore what nutrient information is missed by the SOGOS float alone. Even within
the low EKE region (yeardays 170-200) when the gliders and float tend to sample close together,
the float observes a much narrower range of nitrate values than the gliders (Figure 11, Figure 16a).
The mean value of the float distribution is higher than that of the glider distribution, even when
accounting for RFR prediction errors. The floats’ inability to capture small-scale dynamics may

therefore bias long-term float averages used in other applications.
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Fic. 16: (a) Distributions of mean layer mixed nitrate (Nysz; ) from the RFR glider estimates
(purple) and and the SOGOS float observations (grey) when the platforms sample close to another
in the low EKE region (yeardays 170-200). Means of the distributions are shown by solid lines;
dashed purple lines indicate the bounds of uncertainty using the RFR test MAE calculated for the

low EKE region. (b) Distributions of Ny from the RFR glider estimates in the the high (red)
versus low EKE regions (blue); means of the distributions in solid lines. Float observations (grey)
from both the high and low EKE regions are grouped.

Likewise, differentiating the nutrient distributions between the high and low EKE regions would
be impossible based on the sparse SOGOS float observations alone. On the other hand, the RFR

glider nitrate estimates better resolve the two distinct distributions (Figure 16b), and return a
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statistically significant difference between upper ocean nitrate in the high EKE versus low EKE
regions (Welch t-test statistic: -45.2, p-value =~ 0, dof=1357). The SOGOS float actually sampled
at double the resolution of the typical Argo float (~5 days rather than ~10 days), so the difference
in high-frequency coverage would be even greater in comparison to standard Argo floats. Given
in-situ sampling limitations, approaches like RFR can transfer the benefits of rapid sampling to
variables that are not represented in the gliders’ sensor array. We encourage future observational
deployments to consider utilizing heterogeneous arrays of instruments, especially where machine
learning can be applied to fill in missing information (e.g. Salam and Hsieh (2023); Salcedo-Sanz
et al. (2020); Renosh et al. (2023); Lermusiaux et al. (2017); Chai et al. (2020)).

Among machine learning approaches, RFR is a relatively simple algorithm that can be trained on
regional datasets too small for deep learning. RFR has been successfully applied to a range of cases
in oceanography (e.g. Sharp et al. (2022a); Callens et al. (2020); Tong et al. (2019)), including for
oxygen prediction in the Southern Ocean using BGC-Argo float data (Giglio et al. (2018)). Further-
more, many oceanographic applications highlight RFR as a useful tool for geospatial observations
because of its reduced overfitting tendency and ability to handle non-linear relationships between
variables (Zhou et al. 2023; Sharp et al. 2022b). Deep learning methods are not necessarily better
than simpler algorithms for data that are non-uniformly distributed; where multiple algorithms
produce similar regional predictions, simple learners can offer greater stability and interpretability
(Domingos 2012).

RFR, like all other machine learning models, is still sensitive to the representativeness of training
data and is subject to certain performance limitations (Millard and Richardson 2015). The nature of
in-situ sampling with ocean profilers like floats and gliders poses a challenge for model development
because the training observations are not randomly distributed throughout the region and time
period of interest. Although we select training observations from BGC-Argo floats that appear
to sample tracer characteristics of the same ASZ region in which the SOGOS experiment takes
place (Figure 3), information from these six floats is not sufficient to represent the full range of
tracer relationships in this region, nor how they change over time. Another caveat to RFR is that
we choose a feature list for model training based on the assumption that nitrate content correlates
strongly with given predictive variables like CT, SA, or O,, but this correlation may be weaker

in different parts of the Southern Ocean (Ishizu and Richards 2013). The same submesoscale
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processes we attempt to diagnose using the high-resolution RFR nitrate may already be responsible
for greater decoupling between nitrate and other variables in-situ (Mahadevan 2016; Omand and
Mahadevan 2013). Despite these limitations, our regional RFR produces remarkably low test
prediction errors in one of the most turbulent areas of the global oceans. The success of our RFR
approach highlights the potential for machine learning to improve mapping of ocean fields.
Machine learning and artificial intelligence have been increasingly applied for oceanographic
applications (Sonnewald et al. 2021; Sun et al. 2022), including improving satellite altimetry
products (Martin et al. 2023; Cohen 2019; Fan et al. 2021), estimating biogeochemical distributions
(Bittig et al. 2018; Carter et al. 2021), and identifying eddy activity (Ashkezari et al. 2016; Zhang
et al. 2023), among many others. Future application of RFR or other machine learning approaches
on other multi-platform datasets can be used to address a wide range of questions depending on
what different types of measurements can be synthesized (Salam and Hsieh 2023; Salcedo-Sanz
etal. 2020). Here, our observation-based RFR approach to nitrate prediction in the Southern Ocean
extends previous simulation and theory on high-frequency nutrient dynamics. Given increasing
observational coverage of the global oceans by Argo floats and other drifting profilers, RFR
presents opportunities to derive additional value from these sometimes incomplete biogeochemical
datasets. Such efforts to bridge observational gaps using new ocean technologies and machine
learning techniques will expand our knowledge of global biogeochemical cycles at previously

inaccessible scales.
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APPENDIX

Data Quality Control and Processing

a. Seaglider Processing

The glider data was reprocessed into an L2 xarray Dataset (courtesy of Geoff Shilling and

Craig Lee, Applied Physics Lab) which separates the data into glider profiles and averages the
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raw observations in 1 m depth intervals from 0 to 1000 m. We use the despiked L3 product,
which interpolates observations vertically (gaps < 50m in depth) removes outliers more than 2
standard deviations from the running mean. With quality-controlled BGC-Argo and GO-SHIP
data for reference, additive corrections for CT and SA were determined by finding the closest glider
matches to the quality-controlled Argo measurements, which are assumed to be true reference
values. A threshold of ~5 m depth difference and distance of ~10 km were used as an upper
threshold to filter matches, consistent with float and bottle match thresholds for standard BGC-
Argo quality control (Maurer et al. 2021). The difference dT and dS for each observation pair
was calculated to represent the glider offsets (glider minus float), and had statistically insignificant
slopes along depth. A single additive correction was made for all profiles from one glider. For
temperature, 0.0629°C was added to all profiles from SG659, and 0.030°C added to those from
SG660. For salinity, SG659 had negligible corrections while 0.18 psu was subtracted from SG660
measurements. These corrections are comparable to those performed on the same dataset from
Dove et al. (2021).

We also correct oxygen since oxygen optodes on the rapidly sampling gliders are prone to a time
response lag. As the gliders ascend and descend, a small boundary layer develops around the head of
the optode. The oxygen measurement therefore lags behind the true oxygen concentration, creating
a tendency for gliders to slightly overestimate oxygen on a downward cast, and to underestimate
on an upward cast. Methods for optode lag corrections on Argo floats (code courtesy of Yuichiro
Takeshita, Stoer et al. (2023)) were adapted to the glider optodes. For the standard foil Aanderaa
optodes on the gliders, a boundary layer thickness of ~40 pm was chosen, while the time response
is calculated internally following Bittig et al. (2018). The oxygen sensor is also corrected for an
offset using a gain correction (Johnson et al. 2015). For SG659, we calculated the corrected oxygen

as Opcorr = 1.126(03) —3.256; for SG660, O2prr = 1.0866(07) —0.146.

b. GO-SHIP Processing

Bottle data from the GO-SHIP line 106 in 2019 were accessed through the CLIVAR and Car-
bon Hydrographic Data Office (CCHDO; https://cchdo.ucsd.edu/cruise/325020190403). Quality

control of the bottle data is performed using the provided flags (2: no problems noted).
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c. BGC-Argo Processing

Delayed-mode BGC-Argo data from seven floats (WMO: 5904469, 5904659, 5905368, 5905996,
5906030, 5906031, 5906207) are downloaded from an Argo Global Data Assembly Center (GDAC)
using the Python BGC-Argo Toolbox (https://github.com/go-bgc/workshop-python). Quality con-
trol is performed using standard BGC-Argo QC flags (1: good data, 2: probably good data, 8:

interpolated value).
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